add flag for whether to only count coprime residues
This commit is contained in:
parent
6081757183
commit
0dd446fe74
|
|
@ -26,12 +26,13 @@ import (
|
|||
)
|
||||
|
||||
var quadraticResiduesN uint
|
||||
var quadraticResiduesCoprime bool
|
||||
|
||||
func quadraticResidues(cmd *cobra.Command, args []string) {
|
||||
bufStdout := bufio.NewWriter(os.Stdout)
|
||||
defer bufStdout.Flush()
|
||||
|
||||
ch := sieve.QuadraticResidues(quadraticResiduesN, 1000)
|
||||
ch := sieve.QuadraticResidues(quadraticResiduesN, quadraticResiduesCoprime, 1000)
|
||||
for i := 0; ; i++ {
|
||||
v, ok := <-ch
|
||||
if !ok {
|
||||
|
|
@ -69,4 +70,6 @@ func init() {
|
|||
|
||||
quadraticResiduesCmd.Flags().UintVarP(&quadraticResiduesN, "limit", "n", 0, "upper limit")
|
||||
quadraticResiduesCmd.MarkFlagRequired("limit")
|
||||
|
||||
quadraticResiduesCmd.Flags().BoolVarP(&quadraticResiduesCoprime, "coprime-only", "c", false, "only count residues coprime to the modulus")
|
||||
}
|
||||
|
|
|
|||
|
|
@ -16,22 +16,61 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
*/
|
||||
package sieve
|
||||
|
||||
func updatePowersOfTwo(sieve []uint, n uint) {
|
||||
// NOTE: these formulas come from https://web.archive.org/web/20151224013638/http://www.maa.org/sites/default/files/Walter_D22068._Stangl.pdf
|
||||
|
||||
func updatePowersOfTwoCoprime(sieve []uint, n uint) {
|
||||
for q := uint(8); 2*q < n; q *= 2 {
|
||||
// q(2^n) = 2^(n-3) for n >= 3
|
||||
sieve[2*q] = 2 * sieve[q]
|
||||
}
|
||||
}
|
||||
|
||||
func updatePowersOfOddPrimes(sieve []uint, p uint, n uint) {
|
||||
func updatePowersOfOddPrimesCoprime(sieve []uint, p uint, n uint) {
|
||||
for q := p; p*q < n; q *= p {
|
||||
// q(p^n) = (p^n - p^(n-1)) / 2
|
||||
sieve[p*q] = (p*q - q) / 2
|
||||
}
|
||||
}
|
||||
|
||||
func updatePowersOfTwo(sieve []uint, n uint) {
|
||||
k := 1
|
||||
for q := uint(1); 2*q < n; q *= 2 {
|
||||
if k%2 == 0 {
|
||||
// s(2^n) = (2^(n-1) + 4) / 3 for even n
|
||||
sieve[2*q] = (q + 4) / 3
|
||||
} else {
|
||||
// s(2^n) = (2^(n-1) + 5) / 3 for odd n
|
||||
sieve[2*q] = (q + 5) / 3
|
||||
}
|
||||
|
||||
k += 1
|
||||
}
|
||||
}
|
||||
|
||||
func updatePowersOfOddPrimes(sieve []uint, p uint, n uint) {
|
||||
k := 2
|
||||
for q := p; p*q < n; q *= p {
|
||||
if p == q {
|
||||
// s(p^2) = (p^2 - p + 2) / 2
|
||||
sieve[p*q] = (p*p - p + 2) / 2
|
||||
} else if k%2 == 0 {
|
||||
// s(p^n) = (p^(n+1) + p + 2) / (2*(p+1)) for even n
|
||||
sieve[p*q] = (p*p*q + p + 2) / (2 * (p + 1))
|
||||
} else {
|
||||
// s(p^n) = (p^(n+1) + 2*p + 1) / (2*(p+1)) for odd n
|
||||
sieve[p*q] = (p*p*q + 2*p + 1) / (2 * (p + 1))
|
||||
}
|
||||
|
||||
k += 1
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
QuadraticResidues computes the number of quadratic residues modulo k for k=1 to n.
|
||||
|
||||
see https://oeis.org/A046073
|
||||
*/
|
||||
func QuadraticResidues(n uint, buflen uint) chan uint {
|
||||
func QuadraticResidues(n uint, coprime bool, buflen uint) chan uint {
|
||||
sieve := make([]uint, n)
|
||||
for i := uint(0); i < n; i++ {
|
||||
sieve[i] = 1
|
||||
|
|
@ -40,6 +79,17 @@ func QuadraticResidues(n uint, buflen uint) chan uint {
|
|||
ch := make(chan uint, buflen)
|
||||
go func() {
|
||||
defer close(ch)
|
||||
if coprime {
|
||||
sieveQRCoprime(sieve, n, ch)
|
||||
} else {
|
||||
sieveQR(sieve, n, ch)
|
||||
}
|
||||
}()
|
||||
|
||||
return ch
|
||||
}
|
||||
|
||||
func sieveQRCoprime(sieve []uint, n uint, ch chan uint) {
|
||||
for i := uint(0); i < n; i++ {
|
||||
if i == 0 || i == 1 || i == 4 || i == 6 || i == 8 || i == 12 || i == 24 || sieve[i] != 1 {
|
||||
ch <- sieve[i]
|
||||
|
|
@ -47,16 +97,32 @@ func QuadraticResidues(n uint, buflen uint) chan uint {
|
|||
}
|
||||
|
||||
if i == 2 {
|
||||
updatePowersOfTwo(sieve, n)
|
||||
updatePowersOfTwoCoprime(sieve, n)
|
||||
} else {
|
||||
sieve[i] = (i - 1) / 2
|
||||
updatePowersOfOddPrimesCoprime(sieve, i, n)
|
||||
}
|
||||
|
||||
updateMultiples(sieve, i, n, false)
|
||||
ch <- sieve[i]
|
||||
}
|
||||
}
|
||||
|
||||
func sieveQR(sieve []uint, n uint, ch chan uint) {
|
||||
for i := uint(0); i < n; i++ {
|
||||
if i == 0 || i == 1 || sieve[i] != 1 {
|
||||
ch <- sieve[i]
|
||||
continue
|
||||
}
|
||||
|
||||
if i == 2 {
|
||||
updatePowersOfTwo(sieve, n)
|
||||
} else {
|
||||
sieve[i] = (i + 1) / 2
|
||||
updatePowersOfOddPrimes(sieve, i, n)
|
||||
}
|
||||
|
||||
updateMultiples(sieve, i, n, false)
|
||||
ch <- sieve[i]
|
||||
}
|
||||
}()
|
||||
|
||||
return ch
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue