mathtools/internal/lib/sieve/qresidue.go

132 lines
3.0 KiB
Go

/*
Copyright © 2025 filifa
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package sieve
// NOTE: these formulas come from https://web.archive.org/web/20151224013638/http://www.maa.org/sites/default/files/Walter_D22068._Stangl.pdf
func qrPowersOfTwoCoprime(sieve []uint, n uint) {
for q := uint(8); 2*q < n; q *= 2 {
// q(2^n) = 2^(n-3) for n >= 3
sieve[2*q] = 2 * sieve[q]
}
}
func qrPowersOfOddPrimesCoprime(sieve []uint, p uint, n uint) {
for q := p; p*q < n; q *= p {
// q(p^n) = (p^n - p^(n-1)) / 2
sieve[p*q] = (p*q - q) / 2
}
}
func qrPowersOfTwo(sieve []uint, n uint) {
k := 1
for q := uint(1); 2*q < n; q *= 2 {
if k%2 == 0 {
// s(2^n) = (2^(n-1) + 4) / 3 for even n
sieve[2*q] = (q + 4) / 3
} else {
// s(2^n) = (2^(n-1) + 5) / 3 for odd n
sieve[2*q] = (q + 5) / 3
}
k += 1
}
}
func qrPowersOfOddPrimes(sieve []uint, p uint, n uint) {
k := 3
for q := p * p; p*q < n; q *= p {
if k%2 == 0 {
// s(p^n) = (p^(n+1) + p + 2) / (2*(p+1)) for even n
sieve[p*q] = (p*p*q + p + 2) / (2 * (p + 1))
} else {
// s(p^n) = (p^(n+1) + 2*p + 1) / (2*(p+1)) for odd n
sieve[p*q] = (p*p*q + 2*p + 1) / (2 * (p + 1))
}
k += 1
}
}
/*
QuadraticResidues computes the number of quadratic residues modulo k for k=1 to n.
see https://oeis.org/A000224 and https://oeis.org/A046073
*/
func QuadraticResidues(n uint, coprime bool, buflen uint) chan uint {
sieve := make([]uint, n)
for i := uint(0); i < n; i++ {
sieve[i] = 1
}
ch := make(chan uint, buflen)
go func() {
defer close(ch)
if coprime {
sieveQRCoprime(sieve, n, ch)
} else {
sieveQR(sieve, n, ch)
}
}()
return ch
}
func sieveQRCoprime(sieve []uint, n uint, ch chan uint) {
for i := uint(0); i < n; i++ {
if i == 0 || i == 1 || i == 4 || i == 6 || i == 8 || i == 12 || i == 24 || sieve[i] != 1 {
ch <- sieve[i]
continue
}
if i == 2 {
qrPowersOfTwoCoprime(sieve, n)
} else {
// q(p) = (p - 1) / 2
sieve[i] = (i - 1) / 2
qrPowersOfOddPrimesCoprime(sieve, i, n)
}
updateMultiples(sieve, i, n, false)
ch <- sieve[i]
}
}
func sieveQR(sieve []uint, n uint, ch chan uint) {
for i := uint(0); i < n; i++ {
if i == 0 || i == 1 || sieve[i] != 1 {
ch <- sieve[i]
continue
}
if i == 2 {
qrPowersOfTwo(sieve, n)
} else {
// s(p) = (p + 1) / 2
sieve[i] = (i + 1) / 2
if i*i < n {
// s(p^2) = (p^2 - p + 2) / 2
sieve[i*i] = (i*i - i + 2) / 2
}
qrPowersOfOddPrimes(sieve, i, n)
}
updateMultiples(sieve, i, n, false)
ch <- sieve[i]
}
}