mcalc/workers/math.js

230 lines
4.2 KiB
JavaScript
Raw Permalink Normal View History

2025-12-12 04:49:34 +00:00
/*
Copyright (C) 2025 filifa
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
2025-12-12 04:49:34 +00:00
function xgcd(a, b) {
let [old_r, r] = [a, b];
let [old_s, s] = [1n, 0n];
let [old_t, t] = [0n, 1n];
while (r !== 0n) {
const quotient = old_r / r;
[old_r, r] = [r, old_r - quotient * r];
[old_s, s] = [s, old_s - quotient * s];
[old_t, t] = [t, old_t - quotient * t];
}
return [old_r, old_s, old_t];
}
function modinv(x, modulus) {
let [r, s, t] = xgcd(x, modulus);
if (r !== 1n) {
throw new Error(`no inverse exists - ${x} and ${modulus} are not coprime`);
}
if (s < 0n) {
s += modulus;
}
return s;
}
function modpow(base, exponent, modulus) {
if (exponent < 0n) {
const p = modpow(base, -exponent, modulus);
return modinv(p, modulus);
}
if (modulus === 1n) {
return 0n;
}
let result = 1n;
base %= modulus;
while (exponent > 0n) {
if (exponent % 2n === 1n) {
result *= base;
result %= modulus;
}
exponent >>= 1n;
base *= base;
base %= modulus;
}
return result;
}
2025-12-12 04:49:34 +00:00
function factorTwos(n) {
2025-12-12 04:49:34 +00:00
let s = 0;
2025-12-12 04:49:34 +00:00
while (n % 2n === 0n) {
n /= 2n;
2025-12-12 04:49:34 +00:00
s++;
}
2025-12-12 04:49:34 +00:00
return [n, s];
}
function witness(a, n) {
const [d, s] = factorTwos(n - 1n);
2025-12-12 04:49:34 +00:00
let x = modpow(a, d, n);
let y = null;
for (let i = 0; i < s; i++) {
y = modpow(x, 2n, n);
if (y === 1n && x !== 1n && x !== n - 1n) {
return true;
}
x = y
}
return y !== 1n
}
function randbigint() {
return BigInt(Math.floor(Math.random() * Number.MAX_SAFE_INTEGER))
}
function isprime(n) {
if (n === 2n) {
return true;
} else if (n % 2n === 0n) {
return false;
}
const trials = 10;
for (let i = 0; i < trials; i++) {
const a = randbigint() % (n - 1n) + 1n;
if (witness(a, n)) {
return false;
}
}
return true;
}
2025-12-12 04:49:34 +00:00
function legendreSymbol(a, p) {
let r = modpow(a, (p - 1n)/2n, p);
if (r === p - 1n) {
r = -1n;
}
return r;
}
2025-12-12 04:49:34 +00:00
function quadraticNonResidue(p) {
// TODO: consider randomizing this
for (let a = 2n; a < p; a++) {
2025-12-12 04:49:34 +00:00
if (legendreSymbol(a, p) === -1n) {
2025-12-12 04:49:34 +00:00
return a;
}
}
}
2025-12-12 04:49:34 +00:00
function tonelliShanks(n, p) {
2025-12-12 04:49:34 +00:00
const [q, s] = factorTwos(p - 1n);
2025-12-12 04:49:34 +00:00
const z = quadraticNonResidue(p);
let m = s;
let c = modpow(z, q, p);
let t = modpow(n, q, p);
let r = modpow(n, (q+1n)/2n, p);
while (true) {
if (t === 0n) {
return 0n;
} else if (t === 1n) {
return r;
}
let k = t;
let i = null;
for (i = 1; i < m; i++) {
k = modpow(k, 2n, p);
if (k === 1n) {
break;
}
}
if (i === m) {
throw new Error("radicand is not a quadratic residue of the modulus");
}
const e = BigInt(Math.pow(2, m - i - 1));
const b = modpow(c, e, p);
m = i;
c = modpow(b, 2n, p);
t = (t * c) % p;
r = (r * b) % p;
}
}
function modsqrt(n, modulus) {
// TODO: add support for prime power modulus (Hensel's lemma)
if (!isprime(modulus)) {
throw new Error("modulus must be prime to compute square root");
}
2025-12-12 04:49:34 +00:00
n %= modulus;
if (n < 0n) {
n += modulus;
}
2025-12-12 04:49:34 +00:00
2025-12-12 04:49:35 +00:00
let r = null;
2025-12-12 04:49:34 +00:00
if (n % modulus === 0n) {
2025-12-12 04:49:35 +00:00
r = 0n;
2025-12-12 04:49:34 +00:00
} else if (modulus === 2n) {
2025-12-12 04:49:35 +00:00
r = n % 2n;
2025-12-12 04:49:34 +00:00
} else if (legendreSymbol(n, modulus) !== 1n) {
throw new Error("radicand is not a quadratic residue of the modulus");
2025-12-12 04:49:34 +00:00
} else if (modulus % 4n === 3n) {
2025-12-12 04:49:35 +00:00
r = modpow(n, (modulus+1n)/4n, modulus);
} else {
r = tonelliShanks(n, modulus);
}
if (modulus - r <= r) {
r = modulus - r;
2025-12-12 04:49:34 +00:00
}
2025-12-12 04:49:35 +00:00
return r;
2025-12-12 04:49:34 +00:00
}
2025-12-12 04:49:34 +00:00
function ord(n, modulus) {
n %= modulus;
if (n < 0n) {
n += modulus;
}
const [g, s, t] = xgcd(n, modulus);
if (g !== 1n) {
throw new Error(`can't compute multiplicative order - ${n} and ${modulus} are not coprime`);
}
// NOTE: this is a hard problem, but there are more efficient approaches
let k = 1n;
let a = n;
while (a !== 1n) {
a *= n;
a %= modulus;
k += 1n;
}
return k;
}