mcalc/modules/math.js

104 lines
1.7 KiB
JavaScript

function xgcd(a, b) {
let [old_r, r] = [a, b];
let [old_s, s] = [1n, 0n];
let [old_t, t] = [0n, 1n];
while (r !== 0n) {
const quotient = old_r / r;
[old_r, r] = [r, old_r - quotient * r];
[old_s, s] = [s, old_s - quotient * s];
[old_t, t] = [t, old_t - quotient * t];
}
return [old_r, old_s, old_t];
}
function modinv(x, modulus) {
let [r, s, t] = xgcd(x, modulus);
if (r !== 1n) {
throw new Error(`no inverse exists - ${x} and ${modulus} are not coprime`);
}
if (s < 0n) {
s += modulus;
}
return s;
}
function modpow(base, exponent, modulus) {
if (exponent < 0n) {
const p = modpow(base, -exponent, modulus);
return modinv(p, modulus);
}
if (modulus === 1n) {
return 0n;
}
let result = 1n;
base %= modulus;
while (exponent > 0n) {
if (exponent % 2n === 1n) {
result *= base;
result %= modulus;
}
exponent >>= 1n;
base *= base;
base %= modulus;
}
return result;
}
function witness(a, n) {
let d = n - 1n;
let s = 0;
while (d % 2n === 0n) {
d /= 2n;
s++;
}
let x = modpow(a, d, n);
let y = null;
for (let i = 0; i < s; i++) {
y = modpow(x, 2n, n);
if (y === 1n && x !== 1n && x !== n - 1n) {
return true;
}
x = y
}
return y !== 1n
}
function randbigint() {
return BigInt(Math.floor(Math.random() * Number.MAX_SAFE_INTEGER))
}
function isprime(n) {
if (n === 2n) {
return true;
} else if (n % 2n === 0n) {
return false;
}
const trials = 10;
for (let i = 0; i < trials; i++) {
const a = randbigint() % (n - 1n) + 1n;
if (witness(a, n)) {
return false;
}
}
return true;
}
function tonelliShanks(n, p) {
throw new Error("not implemented");
}
export { tonelliShanks, modinv, modpow, isprime };