179 lines
3.3 KiB
JavaScript
179 lines
3.3 KiB
JavaScript
function xgcd(a, b) {
|
|
let [old_r, r] = [a, b];
|
|
let [old_s, s] = [1n, 0n];
|
|
let [old_t, t] = [0n, 1n];
|
|
|
|
while (r !== 0n) {
|
|
const quotient = old_r / r;
|
|
[old_r, r] = [r, old_r - quotient * r];
|
|
[old_s, s] = [s, old_s - quotient * s];
|
|
[old_t, t] = [t, old_t - quotient * t];
|
|
}
|
|
|
|
return [old_r, old_s, old_t];
|
|
}
|
|
|
|
function modinv(x, modulus) {
|
|
let [r, s, t] = xgcd(x, modulus);
|
|
if (r !== 1n) {
|
|
throw new Error(`no inverse exists - ${x} and ${modulus} are not coprime`);
|
|
}
|
|
|
|
if (s < 0n) {
|
|
s += modulus;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
function modpow(base, exponent, modulus) {
|
|
if (exponent < 0n) {
|
|
const p = modpow(base, -exponent, modulus);
|
|
return modinv(p, modulus);
|
|
}
|
|
|
|
if (modulus === 1n) {
|
|
return 0n;
|
|
}
|
|
|
|
let result = 1n;
|
|
base %= modulus;
|
|
|
|
while (exponent > 0n) {
|
|
if (exponent % 2n === 1n) {
|
|
result *= base;
|
|
result %= modulus;
|
|
}
|
|
|
|
exponent >>= 1n;
|
|
base *= base;
|
|
base %= modulus;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
function binaryOpPop(stack) {
|
|
const b = stack.pop();
|
|
const a = stack.pop();
|
|
if (a === undefined || b === undefined) {
|
|
throw new Error("invalid expression");
|
|
}
|
|
|
|
return [a, b];
|
|
}
|
|
|
|
function witness(a, n) {
|
|
let d = n - 1n;
|
|
let s = 0;
|
|
while (d % 2n === 0n) {
|
|
d /= 2n;
|
|
s++;
|
|
}
|
|
|
|
let x = modpow(a, d, n);
|
|
let y = null;
|
|
for (let i = 0; i < s; i++) {
|
|
y = modpow(x, 2n, n);
|
|
if (y === 1n && x !== 1n && x !== n - 1n) {
|
|
return true;
|
|
}
|
|
x = y
|
|
}
|
|
|
|
return y !== 1n
|
|
}
|
|
|
|
function randbigint() {
|
|
return BigInt(Math.floor(Math.random() * Number.MAX_SAFE_INTEGER))
|
|
}
|
|
|
|
function isprime(n) {
|
|
if (n === 2n) {
|
|
return true;
|
|
} else if (n % 2n === 0n) {
|
|
return false;
|
|
}
|
|
|
|
const trials = 10;
|
|
for (let i = 0; i < trials; i++) {
|
|
const a = randbigint() % (n - 1n) + 1n;
|
|
if (witness(a, n)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
function tonelliShanks(n, p) {
|
|
throw new Error("not implemented");
|
|
}
|
|
|
|
function compute(queue, modulus) {
|
|
const stack = [];
|
|
for (const token of queue) {
|
|
if (typeof token === "bigint") {
|
|
stack.push(token);
|
|
} else if (token === "+") {
|
|
let [a, b] = binaryOpPop(stack);
|
|
a %= modulus;
|
|
b %= modulus;
|
|
const c = (a + b) % modulus;
|
|
stack.push(c);
|
|
} else if (token === "-") {
|
|
let [a, b] = binaryOpPop(stack);
|
|
a %= modulus;
|
|
b %= modulus;
|
|
const c = (a - b) % modulus;
|
|
stack.push(c);
|
|
} else if (token === "*") {
|
|
let [a, b] = binaryOpPop(stack);
|
|
a %= modulus;
|
|
b %= modulus;
|
|
const c = (a * b) % modulus;
|
|
stack.push(c);
|
|
} else if (token === "/") {
|
|
let [a, b] = binaryOpPop(stack);
|
|
a %= modulus;
|
|
b %= modulus;
|
|
const binv = modinv(b, modulus);
|
|
const c = (a * binv) % modulus;
|
|
stack.push(c);
|
|
} else if (token === "u") {
|
|
let a = stack.pop();
|
|
if (a === undefined) {
|
|
throw new Error("invalid expression");
|
|
}
|
|
|
|
a *= -1n;
|
|
stack.push(a);
|
|
} else if (token === "^") {
|
|
const [a, b] = binaryOpPop(stack);
|
|
const c = modpow(a, b, modulus);
|
|
stack.push(c);
|
|
} else if (token === "sqrt") {
|
|
if (!isprime(modulus)) {
|
|
throw new Error("modulus must be prime to compute square root");
|
|
}
|
|
|
|
const a = stack.pop();
|
|
const s = tonelliShanks(a, modulus);
|
|
stack.push(s);
|
|
}
|
|
}
|
|
|
|
if (stack.length !== 1) {
|
|
throw new Error("error evaluating expression");
|
|
}
|
|
|
|
let result = stack[0] % modulus;
|
|
if (result < 0n) {
|
|
result += modulus;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
export { compute };
|