eulerbooks/notebooks/problem0078.ipynb

122 lines
3.9 KiB
Plaintext
Raw Permalink Normal View History

2025-05-26 00:47:21 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "683859dd",
"metadata": {},
"source": [
"# [Coin Partitions](https://projecteuler.net/problem=78)\n",
"\n",
"SageMath once again makes this pretty trivial."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "48a703c0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"55374"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from itertools import count\n",
"\n",
"for n in count(1):\n",
" if number_of_partitions(n) % 1000000 == 0:\n",
" break\n",
"\n",
"n"
]
},
{
"cell_type": "markdown",
"id": "ec850c78",
"metadata": {},
"source": [
"Theoretically, we could create a generating function like we did in [problem 31](https://projecteuler.net/problem=76) or [problem 76](https://projecteuler.net/problem=76) to solve this, and could even use $\\mathbb{Z}_{1000000}$ as our base ring to handle the modulus automagically, but since the answer is pretty large, it would be impractical to construct the function with the required precision.\n",
"\n",
2025-07-21 00:05:01 +00:00
"Instead, if you'd like to implement the [partition function](https://w.wiki/EoNj) yourself, Euler's [pentagonal number theorem](https://en.wikipedia.org/wiki/Pentagonal_number_theorem) leads to a useful recurrence equation:\n",
2025-05-26 00:47:21 +00:00
"$$p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + p(n - 12) + p(n - 15) - p(n - 22) - p(n - 26) + \\cdots$$\n",
"Here, the numbers are the [generalized pentagonal numbers](https://en.wikipedia.org/wiki/Pentagonal_number). As base cases, $p(0) = 1$ and $p(n) = 0$ for negative $n$, so the infinite series eventually converges.\n",
"\n",
"We can directly translate this equation into an implementation."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c8dd39e8",
"metadata": {},
"outputs": [],
"source": [
"from functools import cache\n",
"\n",
"@cache\n",
"def p(n, modulus):\n",
" if n < 0:\n",
" return 0\n",
" \n",
" if n == 0:\n",
" return 1\n",
" \n",
" total = 0\n",
" limit = floor((1 + sqrt(1+24*n)) / 6)\n",
" \n",
" # we reverse the range so smaller p(n) values are calculated first and cached\n",
" # this helps avoid hitting Python's maximum recursion depth\n",
" for k in reversed(range(1, limit + 1)):\n",
" total += (-1)^(k+1) * (p(n - polygonal_number(5, k), modulus) + p(n - polygonal_number(5, -k), modulus))\n",
" total %= modulus\n",
" \n",
" return total"
]
},
{
"cell_type": "markdown",
"id": "df91171b",
"metadata": {},
"source": [
"Note that SageMath uses libraries like [FLINT](https://flintlib.org/doc/partitions.html) with faster - but much more technical - methods, like the Hardy-Ramanujan-Rademacher formula. This implementation is much easier to both understand and write, but is less performant.\n",
"\n",
"## Relevant sequences\n",
"* Partition numbers: [A000041](https://oeis.org/A000041)\n",
2025-07-25 03:08:19 +00:00
"* Generalized pentagonal numbers: [A001318](https://oeis.org/A001318)\n",
"\n",
"#### Copyright (C) 2025 filifa\n",
"\n",
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
2025-05-26 00:47:21 +00:00
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}