211 lines
5.4 KiB
Plaintext
211 lines
5.4 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "ca2d9c5a",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# [Diophantine Equation](https://projecteuler.net/problem=66)\n",
|
||
|
"\n",
|
||
|
"SageMath can solve these [Diophantine equations](https://en.wikipedia.org/wiki/Diophantine_equation) for us. For equations of the form $x^2 - Dy^2 = 1$ (which are called [Pell equations](https://en.wikipedia.org/wiki/Pell%27s_equation)), it will give parameterizations in $t$ for both $x$ and $y$. Here's $D=2$ as an example:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "d6c3ebd4",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[(-sqrt(2)*(2*sqrt(2) + 3)^t + sqrt(2)*(-2*sqrt(2) + 3)^t - 3/2*(2*sqrt(2) + 3)^t - 3/2*(-2*sqrt(2) + 3)^t,\n",
|
||
|
" 3/4*sqrt(2)*(2*sqrt(2) + 3)^t - 3/4*sqrt(2)*(-2*sqrt(2) + 3)^t + (2*sqrt(2) + 3)^t + (-2*sqrt(2) + 3)^t),\n",
|
||
|
" (sqrt(2)*(2*sqrt(2) + 3)^t - sqrt(2)*(-2*sqrt(2) + 3)^t + 3/2*(2*sqrt(2) + 3)^t + 3/2*(-2*sqrt(2) + 3)^t,\n",
|
||
|
" -3/4*sqrt(2)*(2*sqrt(2) + 3)^t + 3/4*sqrt(2)*(-2*sqrt(2) + 3)^t - (2*sqrt(2) + 3)^t - (-2*sqrt(2) + 3)^t)]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"var('x,y')\n",
|
||
|
"solve_diophantine(x^2 - 2*y^2 == 1)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "519c091f",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"$t=0$ seems to correspond to the minimal solution we are after."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "4b9b6240",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def minimal_solution(d):\n",
|
||
|
" var('x,y')\n",
|
||
|
" \n",
|
||
|
" sols = solve_diophantine(x^2 - d*y^2 == 1)\n",
|
||
|
" u, v = sols[0]\n",
|
||
|
" return (abs(u(t=0).simplify_full()), abs(v(t=0).simplify_full()))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "42ba15f7",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Now we can just iterate (although it is pretty slow)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "300b1afb",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"661"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 3,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"max((d for d in range(1, 1001) if not is_square(d)), key=lambda k: minimal_solution(k)[0])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "b16636f7",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Let's dig a little deeper so we can optimize.\n",
|
||
|
"\n",
|
||
|
"## Solving Pell equations\n",
|
||
|
"Lagrange proved that if $(x_0, y_0)$ is a solution to\n",
|
||
|
"$$x^2 - dy^2 = 1$$\n",
|
||
|
"then $\\frac{x_0}{y_0}$ is a [convergent of the continued fraction](https://en.wikipedia.org/wiki/Simple_continued_fraction) of $\\sqrt{d}$. This is great for us, since we can write generators for computing convergents of square roots (FYI, SageMath can do this with built-in methods: `continued_fraction(sqrt(d)).convergents()`)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "c51f9b7e",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def continued_fraction_sqrt(d):\n",
|
||
|
" x = sqrt(d)\n",
|
||
|
" while True:\n",
|
||
|
" b = floor(x)\n",
|
||
|
" yield b\n",
|
||
|
" x = (x - b)^-1\n",
|
||
|
" \n",
|
||
|
" \n",
|
||
|
"def convergents(partial_denoms):\n",
|
||
|
" h, hprev = 1, 0\n",
|
||
|
" k, kprev = 0, 1\n",
|
||
|
" for b in partial_denoms:\n",
|
||
|
" h, hprev = b * h + hprev, h\n",
|
||
|
" k, kprev = b * k + kprev, k\n",
|
||
|
" yield h/k"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "d5cbf5eb",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Then we can just iterate over each convergent to see if its numerator and denominator are a solution to the Pell equation."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "5d95125c",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def pell_fundamental_solution(d):\n",
|
||
|
" partial_denoms = continued_fraction_sqrt(d)\n",
|
||
|
" for f in convergents(partial_denoms):\n",
|
||
|
" x, y = f.as_integer_ratio()\n",
|
||
|
" if x^2 - d*y^2 == 1:\n",
|
||
|
" return (x, y)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "b0bec674",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Now we'll just iterate with this function instead."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "03d7ba9d",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"661"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"max((d for d in range(1, 1001) if not is_square(d)), key=lambda x: pell_fundamental_solution(x)[0])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "cfb42d20",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Relevant sequences\n",
|
||
|
"* Minimal values of $x$ for solutions to the Pell equation: [A002350](https://oeis.org/A002350)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "SageMath 9.5",
|
||
|
"language": "sage",
|
||
|
"name": "sagemath"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.11.2"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|