From 0d858b90ed4bdeb545b285c993138784527f4503 Mon Sep 17 00:00:00 2001 From: filifa Date: Thu, 17 Apr 2025 20:41:13 -0400 Subject: [PATCH] add problem 35 --- notebooks/problem0035.ipynb | 84 +++++++++++++++++++++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 notebooks/problem0035.ipynb diff --git a/notebooks/problem0035.ipynb b/notebooks/problem0035.ipynb new file mode 100644 index 0000000..45378d8 --- /dev/null +++ b/notebooks/problem0035.ipynb @@ -0,0 +1,84 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f118733f", + "metadata": {}, + "source": [ + "# [Circular Primes](https://projecteuler.net/problem=35)\n", + "\n", + "We're only looking for [circular primes](https://en.wikipedia.org/wiki/Circular_prime) below one million, which makes this search not too strenuous. Obviously, being prime is a precondition for being a circular prime, so we can start our search by only checking primes below one million.\n", + "\n", + "We can then use Python's [`deque` class](https://docs.python.org/3/library/collections.html) to write a function that cycles through a prime number's digits to check if it is a circular prime." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9d4833c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "55\n" + ] + } + ], + "source": [ + "from collections import deque\n", + "\n", + "def is_circular_prime(p):\n", + " d = deque(str(p))\n", + " while True:\n", + " d.rotate()\n", + " rp = int(\"\".join(d))\n", + " if rp == p:\n", + " break\n", + " elif not is_prime(rp):\n", + " return False\n", + " \n", + " return True\n", + "\n", + "\n", + "circular_primes = set(p for p in prime_range(1000000) if is_circular_prime(p))\n", + "print(len(circular_primes))" + ] + }, + { + "cell_type": "markdown", + "id": "5e21d050", + "metadata": {}, + "source": [ + "There are other optimizations you can make - for instance, every multi-digit circular prime can only be composed of the digits 1, 3, 7, and 9 (since having another digit would eventually result in a rotation that ends in an even number or 5, which obviously isn't prime) - but why bother (for this problem) when it's already this fast?\n", + "\n", + "Another note - there aren't that many known circular primes, and all of the known ones greater than one million are [repunits](https://en.wikipedia.org/wiki/Repunit).\n", + "\n", + "## Relevant sequences\n", + "* Circular primes: [A068652](https://oeis.org/A068652)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 9.5", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}