add problem 91
This commit is contained in:
parent
57dc69699c
commit
0fcba4a2e6
|
@ -0,0 +1,92 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "dcfe1d77",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# [Right Triangles with Integer Coordinates](https://projecteuler.net/problem=91)\n",
|
||||
"\n",
|
||||
"We'll start by generating all the possible values of $P$ and $Q$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "cba05ca7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"limit = 50\n",
|
||||
"points = ((x, y) for x in range(0, limit + 1) for y in range(0, limit + 1) if (x, y) != (0, 0))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "90cb43dd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If we think about $P$ and $Q$ as vectors instead of points, we can solve this problem with [dot products](https://en.wikipedia.org/wiki/Dot_product). Since the dot product of orthogonal vectors is 0, we can check for a right angle in the triangle by seeing if $\\vec{P} \\cdot \\vec{Q} = 0$, $\\vec{P} \\cdot (\\vec{Q} - \\vec{P}) = 0$, or $\\vec{Q} \\cdot (\\vec{Q} - \\vec{P}) = 0$. By distributing in the last two equations, we can simply check if $\\vec{P} \\cdot \\vec{Q}$ equals 0, $\\vec{P} \\cdot \\vec{P}$, or $\\vec{Q} \\cdot \\vec{Q}$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "18e334eb",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"14234"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from itertools import combinations\n",
|
||||
"\n",
|
||||
"triangles = set()\n",
|
||||
"for ((x1, y1), (x2, y2)) in combinations(points, 2):\n",
|
||||
" d = x1 * x2 + y1 * y2\n",
|
||||
" if d == 0 or d == x1^2 + y1^2 or d == x2^2 + y2^2:\n",
|
||||
" triangles.add(((x1, y1), (x2, y2)))\n",
|
||||
" \n",
|
||||
"len(triangles)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "35a4a234",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Relevant sequences\n",
|
||||
"* Answers for limits of 0, 1, 2, ...: [A155154](https://oeis.org/A155154)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "SageMath 9.5",
|
||||
"language": "sage",
|
||||
"name": "sagemath"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue