add problem 58
This commit is contained in:
parent
d2510f9123
commit
53da1669d4
|
@ -0,0 +1,91 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7edea8e5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# [Spiral Primes](https://projecteuler.net/problem=58)\n",
|
||||
"\n",
|
||||
"It's the return of the Ulam spiral from [problem 28](https://projecteuler.net/problem=28) (this time we're going counter-clockwise, but that doesn't actually affect much).\n",
|
||||
"\n",
|
||||
"We can handle this problem with a couple of easy-to-derive formulas. First, for a spiral with side length $n$ (note that $n$ must be odd), the number of diagonal entries is $2n-1$. Furthermore, the outermost diagonal entries will be $n^2$, $n^2 - (n-1)$, $n^2 - 2(n-1)$, and $n^2 - 3(n-1)$.\n",
|
||||
"\n",
|
||||
"With these facts, we can just iterate over odd values of $n$ and calculate the four outermost diagonal entries. We'll keep a running total $p$ of how many primes we see and stop when $\\frac{p}{2n-1} < 0.1$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "4480be30",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def diagonal(n, k): return n^2 - k*(n-1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "025d7d4b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"26241"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from itertools import count\n",
|
||||
"\n",
|
||||
"p = 0\n",
|
||||
"for n in count(3, 2):\n",
|
||||
" for k in range(0, 4):\n",
|
||||
" if is_prime(diagonal(n, k)):\n",
|
||||
" p += 1\n",
|
||||
" \n",
|
||||
" if p / (2*n - 1) < 0.1:\n",
|
||||
" break\n",
|
||||
"\n",
|
||||
"n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f181c6ae",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Relevant sequences\n",
|
||||
"* Numbers on diagonals: [A200975](https://oeis.org/A200975)\n",
|
||||
"* Primes at right-angle turns on the Ulam spiral: [A172979](https://oeis.org/A172979)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "SageMath 9.5",
|
||||
"language": "sage",
|
||||
"name": "sagemath"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue