diff --git a/notebooks/problem0090.ipynb b/notebooks/problem0090.ipynb new file mode 100644 index 0000000..822f0c1 --- /dev/null +++ b/notebooks/problem0090.ipynb @@ -0,0 +1,142 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "24453968", + "metadata": {}, + "source": [ + "# [Cube Digit Pairs](https://projecteuler.net/problem=90)\n", + "\n", + "There's only ${10 \\choose 6} = 210$ distinct cubes, making this problem easy to brute force. We first make a generator for those cubes." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "06b0661f", + "metadata": {}, + "outputs": [], + "source": [ + "from itertools import combinations\n", + "\n", + "def cubes():\n", + " yield from combinations(range(0, 10), 6)" + ] + }, + { + "cell_type": "markdown", + "id": "87ba05f8", + "metadata": {}, + "source": [ + "We also write a simple function for handling the fact that we can flip 6s and 9s." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "15dab5dd", + "metadata": {}, + "outputs": [], + "source": [ + "def extended_set(s):\n", + " s = set(s)\n", + " if 6 in s:\n", + " s.add(9)\n", + " elif 9 in s:\n", + " s.add(6)\n", + " \n", + " return s" + ] + }, + { + "cell_type": "markdown", + "id": "42f875d0", + "metadata": {}, + "source": [ + "Another simple function tests if we can display all the square numbers with a given pair of cubes." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7396b4e8", + "metadata": {}, + "outputs": [], + "source": [ + "def all_squares_displayable(s, t):\n", + " es = extended_set(s)\n", + " et = extended_set(t)\n", + " \n", + " square_digits = ((0, 1), (0, 4), (0, 9), (1, 6), (2, 5), (3, 6), (4, 9), (6, 4), (8, 1))\n", + " for (m, n) in square_digits:\n", + " if not ((m in es and n in et) or (n in es and m in et)):\n", + " return False\n", + " \n", + " return True" + ] + }, + { + "cell_type": "markdown", + "id": "9efa8055", + "metadata": {}, + "source": [ + "Then we just check all the cube pairs." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "2d11c86f", + "metadata": {}, + "outputs": [], + "source": [ + "arrangements = set()\n", + "for s, t in combinations(cubes(), 2):\n", + " if all_squares_displayable(s, t):\n", + " arrangements.add((s, t))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8ce1fab4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1217" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(arrangements)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 9.5", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}