From 7623a7b99e8c219a87cbc506c1fa0d39e98ed77d Mon Sep 17 00:00:00 2001 From: filifa Date: Sat, 19 Apr 2025 00:44:17 -0400 Subject: [PATCH] add problem 34 --- notebooks/problem0034.ipynb | 126 ++++++++++++++++++++++++++++++++++++ 1 file changed, 126 insertions(+) create mode 100644 notebooks/problem0034.ipynb diff --git a/notebooks/problem0034.ipynb b/notebooks/problem0034.ipynb new file mode 100644 index 0000000..37938c8 --- /dev/null +++ b/notebooks/problem0034.ipynb @@ -0,0 +1,126 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "eba5f5fb", + "metadata": {}, + "source": [ + "# [Digit Factorials](https://projecteuler.net/problem=34)\n", + "\n", + "Numbers like 145 are called [factorions](https://en.wikipedia.org/wiki/Factorion).\n", + "\n", + "We can use similar logic as [problem 30](https://projecteuler.net/problem=30) to produce an upper bound for how many numbers to brute force. Let $f(n)$ be the sum of the factorials of the digits of $n$, and consider the largest seven digit number, 9999999. $f(9999999) = 7 \\times 9! = 2540160$. If we replaced any digits in 9999999, they would have to be smaller than 9, so the sum of the factorials of the digits would be smaller than 2540160. Therefore, for any $n \\leq 9999999$, $f(n) \\leq 2540160$, so for $n$ to *equal* $f(n)$, $n$ must be less than or equal to 2540160, as well.\n", + "\n", + "We can write a simple recursive function for calculating the sum of the factorials of the digits:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "06bc38a2", + "metadata": {}, + "outputs": [], + "source": [ + "from functools import cache\n", + "from math import factorial\n", + "\n", + "@cache\n", + "def sfd(n):\n", + " q = n // 10\n", + " if q == 0:\n", + " return factorial(n)\n", + " \n", + " return factorial(n % 10) + sfd(q)" + ] + }, + { + "cell_type": "markdown", + "id": "c6c47e17", + "metadata": {}, + "source": [ + "Now we just iterate over all the numbers less than our upper bound." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b4642720", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{145, 40585}" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factorions = {n for n in range(3, 2540161) if sfd(n) == n}\n", + "factorions" + ] + }, + { + "cell_type": "markdown", + "id": "1257c102", + "metadata": {}, + "source": [ + "Interestingly, there's only two factorions!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "caccb3bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "40730" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum(factorions)" + ] + }, + { + "cell_type": "markdown", + "id": "b25666f7", + "metadata": {}, + "source": [ + "## Relevant sequences\n", + "* Factorions: [A014080](https://oeis.org/A014080)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 9.5", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}