From 830ca940de901ee579020eeb2255a8cb3cabf327 Mon Sep 17 00:00:00 2001 From: filifa Date: Sun, 29 Jun 2025 22:16:01 -0400 Subject: [PATCH] add problem 86 --- notebooks/problem0086.ipynb | 124 ++++++++++++++++++++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 notebooks/problem0086.ipynb diff --git a/notebooks/problem0086.ipynb b/notebooks/problem0086.ipynb new file mode 100644 index 0000000..259a943 --- /dev/null +++ b/notebooks/problem0086.ipynb @@ -0,0 +1,124 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c102f0bb", + "metadata": {}, + "source": [ + "# [Cuboid Route](https://projecteuler.net/problem=86)\n", + "\n", + "Suppose you have a cuboid with side lengths $a \\leq b \\leq M$. Then the shortest route will be $\\sqrt{(a + b)^2 + M^2}$. We're interested in when this distance is an integer.\n", + "\n", + "However, rather than iterate through values of $a$, $b$, and $M$, we can be more efficient by iterating through values of $M$, then values of $s$, where $s \\leq 2M$. If $s^2 + M^2$ is a square number, then that means any $a,b$ such that $s = a+b$ and $a \\leq b \\leq M$ will correspond to an $a \\times b \\times M$ cuboid with integer shortest route.\n", + "\n", + "So, if $s = a + b$, naturally $b = s - a$, and we want to know how many values of $a$ satisfy $1 \\leq a \\leq s - a \\leq M$. We can derive four bounds on $a$ from this.\n", + "* $1 \\leq a$\n", + "* $s - M \\leq a$\n", + "* $a \\leq \\frac{s}{2}$\n", + "* $a \\leq M$\n", + "\n", + "From these bounds, we can get the number of cuboids that can be constructed from an $(s, M)$ pair." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6ce96a6e", + "metadata": {}, + "outputs": [], + "source": [ + "def leg_splits(s, M):\n", + " max_a = min(M, s // 2 + 1)\n", + " min_a = max(s - M, 1)\n", + " return max_a - min_a" + ] + }, + { + "cell_type": "markdown", + "id": "00e62dfc", + "metadata": {}, + "source": [ + "Then we can write a function to find the number of cuboids with at least one edge equaling $M$." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "caf59499", + "metadata": {}, + "outputs": [], + "source": [ + "def count_cuboids(M):\n", + " return sum(leg_splits(s, M) for s in range(1, 2 * M + 1) if is_square(s^2 + M^2))" + ] + }, + { + "cell_type": "markdown", + "id": "d110565c", + "metadata": {}, + "source": [ + "To get our answer, we just compute a running total and stop when it exceeds one million." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "984b7665", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1818" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from itertools import count\n", + "\n", + "total = 0\n", + "for M in count(1):\n", + " total += count_cuboids(M)\n", + " if total > 1000000:\n", + " break\n", + " \n", + "M" + ] + }, + { + "cell_type": "markdown", + "id": "488ec2af", + "metadata": {}, + "source": [ + "## Relevant sequences\n", + "* Number of pairs $a,b$ such that $(a+b)^2 + n^2$ is square: [A143714](https://oeis.org/A143714)\n", + "* Partial sums of A143714: [A143715](https://oeis.org/A143715)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 9.5", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}