From 8f346d78d6fa3f16a2164d7481148fe5d7cb185b Mon Sep 17 00:00:00 2001 From: filifa Date: Thu, 26 Jun 2025 01:30:24 -0400 Subject: [PATCH] add problem 70 --- notebooks/problem0070.ipynb | 141 ++++++++++++++++++++++++++++++++++++ 1 file changed, 141 insertions(+) create mode 100644 notebooks/problem0070.ipynb diff --git a/notebooks/problem0070.ipynb b/notebooks/problem0070.ipynb new file mode 100644 index 0000000..0cd34ed --- /dev/null +++ b/notebooks/problem0070.ipynb @@ -0,0 +1,141 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ec776294", + "metadata": {}, + "source": [ + "# [Totient Permutation](https://projecteuler.net/problem=70)\n", + "\n", + "SageMath's implementation of $\\phi(n)$ is fast enough that you could brute force this if you wanted, but if we're clever, we can solve more quickly.\n", + "\n", + "We'll write a simple function for determining if two numbers are digit permutations of each other." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e6757165", + "metadata": {}, + "outputs": [], + "source": [ + "def is_permutation_pair(a, b):\n", + " s, t = str(a), str(b)\n", + " return sorted(s) == sorted(t)" + ] + }, + { + "cell_type": "markdown", + "id": "bdeb8c77", + "metadata": {}, + "source": [ + "As in [problem 69](https://projecteuler.net/problem=69),\n", + "$$\\phi(n) = n\\prod_{p | n} \\left(1 - \\frac{1}{p}\\right)$$\n", + "\n", + "Rather than calculate the totients of every single number up to $10^7$, we'll start with just the primes - for a prime $p$, $\\phi(p) = p-1$. We'll store these primes in a [min-heap](https://en.wikipedia.org/wiki/Heap_(data_structure)) ordered by $\\frac{p}{\\phi(p)}$." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "244e05bd", + "metadata": {}, + "outputs": [], + "source": [ + "import heapq\n", + "\n", + "limit = 10^7\n", + "\n", + "primes = prime_range(limit)\n", + "queue = [(p / (p - 1), (p, p - 1)) for p in primes]\n", + "heapq.heapify(queue)" + ] + }, + { + "cell_type": "markdown", + "id": "9a057da0", + "metadata": {}, + "source": [ + "Then we'll search to find the value $n$ with the smallest ratio that is also a digit permutation of its totient. We'll check composite values by pushing $np$ to the queue for each prime $p$.\n", + "\n", + "When we find a value that is a digit permutation of its totient, we'll know that it also has the smallest ratio and can stop." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "99c4267a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8319823" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "answer = None\n", + "visited = set()\n", + "while queue != []:\n", + " _, (n, totient) = heapq.heappop(queue)\n", + " \n", + " if n in visited:\n", + " continue\n", + " visited.add(n)\n", + " \n", + " if is_permutation_pair(n, totient):\n", + " answer = n\n", + " break\n", + " \n", + " for p in primes:\n", + " q = n * p\n", + " if q >= limit:\n", + " break\n", + " \n", + " if n % p != 0:\n", + " new_totient = totient * (p - 1)\n", + " else:\n", + " new_totient = totient * p\n", + " \n", + " ratio = q / new_totient\n", + " heapq.heappush(queue, (ratio, (q, new_totient)))\n", + " \n", + "answer" + ] + }, + { + "cell_type": "markdown", + "id": "40cf1e01", + "metadata": {}, + "source": [ + "Note: lots of people in the problem thread make the assumption that the answer must be a [semiprime](https://en.wikipedia.org/wiki/Semiprime). However, Steendor points out that for certain upper bounds, this assumption does not hold. This solution avoids making that assumption." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 9.5", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}