From edcd9b60d1b4cb40db2f4f3020752e243a1ad52c Mon Sep 17 00:00:00 2001 From: filifa Date: Sun, 15 Jun 2025 23:45:01 -0400 Subject: [PATCH] add problem 80 --- notebooks/problem0080.ipynb | 109 ++++++++++++++++++++++++++++++++++++ 1 file changed, 109 insertions(+) create mode 100644 notebooks/problem0080.ipynb diff --git a/notebooks/problem0080.ipynb b/notebooks/problem0080.ipynb new file mode 100644 index 0000000..c0d149a --- /dev/null +++ b/notebooks/problem0080.ipynb @@ -0,0 +1,109 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3aeab8bf", + "metadata": {}, + "source": [ + "# [Square Root Digital Expansion](https://projecteuler.net/problem=80)\n", + "\n", + "Unfortunately, just calling Python's `sqrt` won't cut it - floats don't have nearly enough digits of precision.\n", + "\n", + "The easiest approach here is to use SageMath's arbitrary precision routines, or Python's [decimal](https://docs.python.org/3/library/decimal.html) package. We need to watch for rounding issues, so we'll calculate slightly more than 100 digits and truncate." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b1d58be8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "40886" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def digital_sum(n):\n", + " s = sqrt(n).n(digits=110)\n", + " digits = (int(d) for d in str(s)[:101] if d != '.')\n", + " return sum(digits)\n", + " \n", + "\n", + "sum(digital_sum(n) for n in range(1, 101) if not is_square(n))" + ] + }, + { + "cell_type": "markdown", + "id": "ad2b9aee", + "metadata": {}, + "source": [ + "If you'd rather not use those tools for some reason, another simple approach is to take advantage of Python's arbitrary precision integers and calculate the [integer square root](https://en.wikipedia.org/wiki/Integer_square_root) of $n \\times 10^k$ for a sufficiently large $k$ ($k \\geq 200$ for this problem)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6bd0cb0d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "40886" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def digital_sum(n):\n", + " s = isqrt(n * 10^200)\n", + " digits = (int(d) for d in str(s)[:100])\n", + " return sum(digits)\n", + " \n", + "\n", + "sum(digital_sum(n) for n in range(1, 101) if not is_square(n))" + ] + }, + { + "cell_type": "markdown", + "id": "c193ba51", + "metadata": {}, + "source": [ + "If you want to go the extra mile, there are several [algorithms for computing square roots](https://en.wikipedia.org/wiki/Square_root_algorithms) that you can implement yourself, such as Heron's method, which is a special case of [Newton's method](https://en.wikipedia.org/wiki/Newton%27s_method) for solving $x^2 - n = 0$. The method works by starting with an initial estimate $x_0$ (such as $\\frac{n}{2}$), then repeatedly calculating\n", + "$$x_{k+1} = \\frac{1}{2}\\left(x_k + \\frac{n}{x_k}\\right)$$\n", + "until $|x_{k+1} - x_k|$ is sufficiently small. For computing the integer square root, this can be when $|x_{k+1} - x_k| < 1$." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "SageMath 9.5", + "language": "sage", + "name": "sagemath" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}