{ "cells": [ { "cell_type": "markdown", "id": "6cc372f3", "metadata": {}, "source": [ "# [Lattice Paths](https://projecteuler.net/problem=15)\n", "\n", "Let $f(m, n)$ equal the number of routes in an $m \\times n$ grid. Intuitively, if you start at the top left corner, you immediately have two choices - you can go down or right. If you go down, there are $f(m-1,n)$ routes in the $(m - 1) \\times n$ subgrid; if you go right, there are $f(m,n-1)$ routes in the $m \\times (n-1)$ subgrid. Therefore\n", "$$f(m,n) = f(m-1,n) + f(m,n-1)$$\n", "\n", "There are two trivial base cases: $f(m,0) = 1$ for any $m$ and $f(0,n) = 1$ for any $n$. From these facts, you can write a simple [memoized](https://en.wikipedia.org/wiki/Memoization) recursive function to solve this problem." ] }, { "cell_type": "code", "execution_count": 1, "id": "9878534a", "metadata": {}, "outputs": [], "source": [ "from functools import cache\n", "\n", "@cache\n", "def f(m, n):\n", " if m == 0:\n", " return 1\n", " if n == 0:\n", " return 1\n", " \n", " return f(m - 1, n) + f(m, n - 1)" ] }, { "cell_type": "markdown", "id": "5beab0ed", "metadata": {}, "source": [ "Then the answer is given by" ] }, { "cell_type": "code", "execution_count": 2, "id": "f21257bc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "137846528820" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f(20,20)" ] }, { "cell_type": "markdown", "id": "3561530b", "metadata": {}, "source": [ "However, we can do better and give a non-recursive formula for $f$. It turns out, for an $m \\times n$ grid, there are $\\binom{m+n}{m}$ possible routes. Here's an outline of how you can prove this [inductively](https://en.wikipedia.org/wiki/Mathematical_induction):\n", "\n", "1. Prove $f(m, 0) = \\binom{m+0}{m} = 1$ for all $m$\n", " 1. Prove $f(0, 0) = \\binom{0 + 0}{0} = 1$\n", " 2. Assuming $f(j, 0) = \\binom{j+0}{j} = 1$ for some $j$, prove $f(j+1,0) = \\binom{j+1+0}{j+1} = 1$\n", "2. Assuming there exists some $k$ such that for all $m$, $f(m, k) = \\binom{m + k}{m}$, prove $f(m, k+1) = \\binom{m + k + 1}{m}$ for all $m$\n", " 1. Prove $f(0, k+1) = \\binom{0+k+1}{0} = 1$\n", " 2. Assuming $f(j, k+1) = \\binom{j+k+1}{j}$ for some $j$, prove $f(j+1,k+1) = \\binom{j+k+2}{j+1}$\n", "\n", "Note that there are *three* inductive proofs here - an overall induction on $m$ and nested inductions in both the base case and the induction step (yo dawg, I heard you like induction...).\n", "\n", "One useful identity for proving this, particularly in step 2, comes from [Pascal's triangle](https://en.wikipedia.org/wiki/Pascal%27s_triangle):\n", "$$\\binom{n}{k} = \\binom{n-1}{k} + \\binom{n-1}{k-1}$$" ] }, { "cell_type": "markdown", "id": "2c6e7d8c", "metadata": {}, "source": [ "## Relevant sequences\n", "* Central binomial coefficients: [A000984](https://oeis.org/A000984)\n", "* General formula: [A046899](https://oeis.org/A046899)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }