{ "cells": [ { "cell_type": "markdown", "id": "dea82444", "metadata": {}, "source": [ "# [Amicable Numbers](https://projecteuler.net/problem=21)\n", "\n", "The sum of the proper divisors of a number is called the [aliquot sum](https://en.wikipedia.org/wiki/Aliquot_sum).\n", "\n", "SageMath [provides the `sigma` function](https://doc.sagemath.org/html/en/reference/rings_standard/sage/arith/misc.html#sage.arith.misc.Sigma), which can compute the sum of the divisors of $n$. The aliquot sum is then just `sigma(n) - n`." ] }, { "cell_type": "code", "execution_count": 1, "id": "49bbab13", "metadata": {}, "outputs": [], "source": [ "def aliquot_sum(n): return sigma(n) - n" ] }, { "cell_type": "code", "execution_count": 2, "id": "c57c9f76", "metadata": {}, "outputs": [], "source": [ "limit = 10000" ] }, { "cell_type": "markdown", "id": "a2fe4975", "metadata": {}, "source": [ "If a number is equal to its own aliquot sum, it's called a [perfect number](https://en.wikipedia.org/wiki/Perfect_number), and we exclude those numbers from our total." ] }, { "cell_type": "code", "execution_count": 3, "id": "144e1f54", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "31626" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "amicables = set()\n", "for a in range(2, limit):\n", " if a in amicables:\n", " continue\n", " \n", " b = aliquot_sum(a)\n", " if a == b:\n", " continue\n", " \n", " if a == aliquot_sum(b):\n", " amicables.update({a, b})\n", " \n", "sum(amicables)" ] }, { "cell_type": "markdown", "id": "5b540764", "metadata": {}, "source": [ "Funny enough, there's only five pairs of amicable numbers below 10,000. If you looked up [amicable numbers](https://en.wikipedia.org/wiki/Amicable_numbers), you may have stumbled on all the numbers you need to answer the problem!" ] }, { "cell_type": "code", "execution_count": 4, "id": "f6014a35", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "amicables" ] }, { "cell_type": "markdown", "id": "ca7d5f36", "metadata": {}, "source": [ "## Sum of divisors\n", "Of course, you could implement your own [divisor sum function](https://en.wikipedia.org/wiki/Divisor_function). In [problem 12](https://projecteuler.net/problem=12), we implemented a divisor *counting* function, which is related.\n", "\n", "One important property of the divisor sum function $\\sigma(n)$ is that it is [multiplicative](https://en.wikipedia.org/wiki/Multiplicative_function). This means that if $a$ and $b$ are [coprime](https://en.wikipedia.org/wiki/Coprime_integers), $\\sigma(ab) = \\sigma(a)\\sigma(b)$. It follows that if $n = 2^{r_1}3^{r_2}5^{r_3}7^{r_4}\\cdots$, then\n", "$$\\sigma(n) = \\sigma(2^{r_1})\\sigma(3^{r_2})\\sigma(5^{r_3})\\sigma(7^{r_4})\\cdots$$\n", "\n", "Furthermore, for a prime $p$, $\\sigma(p^k) = 1 + p + p^2 + \\cdots + p^k$. This expression is actually a partial sum of a [geometric series](https://en.wikipedia.org/wiki/Geometric_series), which has a closed formula:\n", "$$1 + p + p^2 + \\cdots + p^k = \\frac{p^{k+1}-1}{p-1}$$\n", "\n", "Putting it all together, we can compute $\\sigma(n)$ as\n", "$$\\sigma(n) = \\frac{2^{r_1+1}-1}{2-1} \\cdot \\frac{3^{r_2+1}-1}{3-1} \\cdot \\frac{5^{r_3+1}-1}{5-1} \\cdot \\frac{7^{r_4+1}-1}{7-1} \\cdot \\cdots$$\n", "\n", "Therefore, if you have the number's factorization (see [problem 3](https://projecteuler.net/problem=3)), you can use it to compute the sum of its divisors.\n", "\n", "## Avoiding factoring\n", "Since we need all the sums of divisors up to 10000, instead of factoring each number individually, we can compute each value of $\\sigma$ in a loop, once again taking advantage of $\\sigma$ being multiplicative. (In some ways, this method is similar to the sieve of Eratosthenes - see [problem 10](https://projecteuler.net/problem=10).)" ] }, { "cell_type": "code", "execution_count": 5, "id": "4cbc68db", "metadata": {}, "outputs": [], "source": [ "def update_multiples(dsum, p, limit):\n", " q = p\n", " while True:\n", " # sigma(a*b) = sigma(a) * sigma(b) if gcd(a, b) = 1\n", " for k in range(2 * q, limit, q):\n", " if k % (p*q) != 0:\n", " dsum[k] *= dsum[q]\n", "\n", " if p * q >= limit:\n", " break\n", "\n", " # sigma(p^k) = p^k + sigma(p^(k-1))\n", " dsum[p*q] = p * q + dsum[q]\n", " q *= p\n", " \n", "\n", "def sum_of_divisors_range(limit): \n", " dsum = [1 for n in range(0, limit)]\n", " dsum[0] = 0\n", " \n", " for n in range(0, limit):\n", " if n == 0 or n == 1 or dsum[n] != 1:\n", " # n is 0, 1, or composite\n", " yield dsum[n]\n", " continue\n", "\n", " # n is prime\n", " dsum[n] = n + 1\n", " update_multiples(dsum, n, limit)\n", " yield dsum[n]" ] }, { "cell_type": "markdown", "id": "f4dc20fe", "metadata": {}, "source": [ "With this method, we can redefine our aliquot sum function:" ] }, { "cell_type": "code", "execution_count": 6, "id": "6b5cb5f8", "metadata": {}, "outputs": [], "source": [ "divisor_sums = list(sum_of_divisors_range(limit))\n", "def aliquot_sum(n): return divisor_sums[n] - n" ] }, { "cell_type": "markdown", "id": "bf501433", "metadata": {}, "source": [ "Then we compute the amicable numbers the same as before." ] }, { "cell_type": "code", "execution_count": 7, "id": "2f70d28c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "31626" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "amicables = set()\n", "for a in range(2, limit):\n", " if a in amicables:\n", " continue\n", " \n", " b = aliquot_sum(a)\n", " if a == b:\n", " continue\n", " \n", " # if b is greater than limit, it will cause an IndexError\n", " if b < limit and a == aliquot_sum(b):\n", " amicables.update({a, b})\n", " \n", "sum(amicables)" ] }, { "cell_type": "markdown", "id": "a847f754", "metadata": {}, "source": [ "## Relevant sequences\n", "* Sums of divisors: [A000203](https://oeis.org/A000203)\n", "* Amicable numbers: [A063990](https://oeis.org/A063990)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }