{ "cells": [ { "cell_type": "markdown", "id": "eba5f5fb", "metadata": {}, "source": [ "# [Digit Factorials](https://projecteuler.net/problem=34)\n", "\n", "Numbers like 145 are called [factorions](https://en.wikipedia.org/wiki/Factorion).\n", "\n", "We can use similar logic as [problem 30](https://projecteuler.net/problem=30) to produce an upper bound for how many numbers to brute force. Let $f(n)$ be the sum of the factorials of the digits of $n$, and consider the largest seven digit number, 9999999. $f(9999999) = 7 \\times 9! = 2540160$. If we replaced any digits in 9999999, they would have to be smaller than 9, so the sum of the factorials of the digits would be smaller than 2540160. Therefore, for any $n \\leq 9999999$, $f(n) \\leq 2540160$, so for $n$ to *equal* $f(n)$, $n$ must be less than or equal to 2540160, as well.\n", "\n", "We can write a simple recursive function for calculating the sum of the factorials of the digits:" ] }, { "cell_type": "code", "execution_count": 1, "id": "06bc38a2", "metadata": {}, "outputs": [], "source": [ "from functools import cache\n", "from math import factorial\n", "\n", "@cache\n", "def sfd(n):\n", " q = n // 10\n", " if q == 0:\n", " return factorial(n)\n", " \n", " return factorial(n % 10) + sfd(q)" ] }, { "cell_type": "markdown", "id": "c6c47e17", "metadata": {}, "source": [ "Now we just iterate over all the numbers less than our upper bound." ] }, { "cell_type": "code", "execution_count": 2, "id": "b4642720", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{145, 40585}" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "factorions = {n for n in range(3, 2540161) if sfd(n) == n}\n", "factorions" ] }, { "cell_type": "markdown", "id": "1257c102", "metadata": {}, "source": [ "Interestingly, there's only two factorions!" ] }, { "cell_type": "code", "execution_count": 3, "id": "caccb3bd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "40730" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(factorions)" ] }, { "cell_type": "markdown", "id": "b25666f7", "metadata": {}, "source": [ "## Relevant sequences\n", "* Factorions: [A014080](https://oeis.org/A014080)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }