{ "cells": [ { "cell_type": "markdown", "id": "78c9390b", "metadata": {}, "source": [ "# [Integer Right Triangles](https://projecteuler.net/problem=39)\n", "\n", "If a right triangle has integer side lengths, the side lengths are a [Pythagorean triple](https://en.wikipedia.org/wiki/Pythagorean_triple). In [problem 9](https://projecteuler.net/problem=9), we wrote a generator for primitive Pythagorean triples based off of Euclid's formula. We can modify that generator to cut off after the triplets have passed a maximum perimeter. Note that a triangle with side lengths generated by Euclid's formula will have perimeter $2m^2 + 2mn$." ] }, { "cell_type": "code", "execution_count": 1, "id": "b03eb872", "metadata": {}, "outputs": [], "source": [ "from itertools import count\n", "\n", "def primitive_pythagorean_triplets(max_perim):\n", " for m in count(2):\n", " if 2*m^2 + 2*m > max_perim:\n", " break\n", "\n", " for n in range(1, m):\n", " if not ((m % 2) != (n % 2)) or gcd(m, n) != 1:\n", " continue\n", " \n", " a = m^2 - n^2\n", " b = 2*m*n\n", " c = m^2 + n^2\n", " \n", " if a + b + c > max_perim:\n", " break\n", " \n", " yield (a, b, c)" ] }, { "cell_type": "markdown", "id": "431ef21c", "metadata": {}, "source": [ "Now we can just iterate through our new generator and group each triangle by their perimeters. We also multiply to consider non-primitive triplets." ] }, { "cell_type": "code", "execution_count": 2, "id": "62aa955f", "metadata": { "scrolled": true }, "outputs": [], "source": [ "max_perim = 1000\n", "perimeters = dict()\n", "for (a, b, c) in primitive_pythagorean_triplets(max_perim):\n", " for k in count(1):\n", " perimeter = k * (a + b + c)\n", " if perimeter > max_perim:\n", " break\n", " \n", " if perimeter not in perimeters:\n", " perimeters[perimeter] = set()\n", " perimeters[perimeter].add((k*a, k*b, k*c))" ] }, { "cell_type": "markdown", "id": "f776a5c6", "metadata": {}, "source": [ "Our answer is whichever perimeter has the highest total." ] }, { "cell_type": "code", "execution_count": 3, "id": "0cd6241f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "840" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p = max(perimeters, key=lambda x: len(perimeters[x]))\n", "p" ] }, { "cell_type": "markdown", "id": "f32fb164", "metadata": {}, "source": [ "There are eight right triangles with this perimeter." ] }, { "cell_type": "code", "execution_count": 4, "id": "9c31c68f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{(105, 360, 375),\n", " (140, 336, 364),\n", " (210, 280, 350),\n", " (252, 240, 348),\n", " (315, 168, 357),\n", " (350, 120, 370),\n", " (390, 56, 394),\n", " (399, 40, 401)}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "perimeters[p]" ] }, { "cell_type": "markdown", "id": "6cb1b692", "metadata": {}, "source": [ "## Related sequences\n", "* Number of integer right triangles with perimeter $n$: [A024155](https://oeis.org/A024155)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }