{ "cells": [ { "cell_type": "markdown", "id": "004fbd82", "metadata": {}, "source": [ "# [Pandigital Prime](https://projecteuler.net/problem=41)\n", "\n", "There's only $1! + 2! + 3! + \\cdots + 9! = 409113$ $n$-digit pandigital numbers. This is a small enough number to brute force, but we can easily optimize even further by applying a [divisibility rule](https://en.wikipedia.org/wiki/Divisibility_rule).\n", "\n", "If the digits of a number sum to a multiple of 3, that number is divisible by 3. Since:\n", "* the digits of every 5-digit pandigital number will sum to 15\n", "* the digits of every 6-digit pandigital number will sum to 21\n", "* the digits of every 8-digit pandigital number will sum to 36\n", "* the digits of every 9-digit pandigital number will sum to 45\n", "\n", "all of these numbers will be divisible by 3, and therefore not be prime. Consequently, to find the largest $n$-digit pandigital prime, we only need to check 4-digit and 7-digit pandigital numbers." ] }, { "cell_type": "code", "execution_count": 1, "id": "9fead48d", "metadata": {}, "outputs": [], "source": [ "from itertools import permutations\n", "\n", "pandigitals = set()\n", "for n in (4, 7):\n", " for permutation in permutations(range(1, n + 1)):\n", " k = sum(10^i * d for (i, d) in enumerate(reversed(permutation)))\n", " pandigitals.add(k)" ] }, { "cell_type": "markdown", "id": "5a4dd5de", "metadata": {}, "source": [ "Now just sort largest-to-smallest and find the first prime." ] }, { "cell_type": "code", "execution_count": 2, "id": "a6eb3473", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7652413" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for p in reversed(sorted(pandigitals)):\n", " if is_prime(p):\n", " break\n", "\n", "p" ] }, { "cell_type": "markdown", "id": "6a9c043d", "metadata": {}, "source": [ "## Relevant sequences\n", "* Pandigital numbers: [A352991](https://oeis.org/A352991)\n", "* Pandigital primes: [A216444](https://oeis.org/A216444)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }