{ "cells": [ { "cell_type": "markdown", "id": "42fd0b2c", "metadata": {}, "source": [ "# [Goldbach's Other Conjecture](https://projecteuler.net/problem=46)\n", "\n", "We can write a function that takes odd composites $m$ and checks successively larger values of $n$ to see if $m - 2n^2$ is prime. If we find such an $n$, $m$ satisfies the conjecture, but if $n$ gets too large, $m - 2n^2$ will become non-positive, and therefore can't be prime, so $m$ fails to satisfy the conjecture." ] }, { "cell_type": "code", "execution_count": 1, "id": "eba09d52", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5777" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from itertools import count\n", "\n", "def satisfies_conjecture(m):\n", " for n in count(1):\n", " p = m - 2 * n^2\n", " if p <= 0:\n", " return False\n", " \n", " if is_prime(p):\n", " return True\n", "\n", "\n", "for k in count(2):\n", " m = 2 * k - 1\n", " if is_prime(m):\n", " continue\n", " \n", " if not satisfies_conjecture(m):\n", " break\n", "\n", "m" ] }, { "cell_type": "markdown", "id": "dd35bb73", "metadata": {}, "source": [ "Interestingly, the only other number known not to satisfy this conjecture is 5993." ] }, { "cell_type": "markdown", "id": "3412975d", "metadata": {}, "source": [ "## Relevant sequences\n", "* Stern numbers (includes all odd numbers, not just composites): [A060003](https://oeis.org/A060003)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }