{ "cells": [ { "cell_type": "markdown", "id": "59fa6654", "metadata": {}, "source": [ "# [Combinatoric Selections](https://projecteuler.net/problem=53)\n", "\n", "Python/SageMath's [unlimited precision integers](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) make this trivial." ] }, { "cell_type": "code", "execution_count": 1, "id": "abf93cda", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4075" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "binoms = (binomial(n, r) for n in range(1, 101) for r in range(0, n + 1))\n", "len([b for b in binoms if b > 1000000])" ] }, { "cell_type": "markdown", "id": "6d7f4409", "metadata": {}, "source": [ "If it weren't for unlimited precision, we would have a problem, since a lot of these [binomial coefficients](https://en.wikipedia.org/wiki/Binomial_coefficient) overflow a 64 bit integer - the largest one we encounter here is $\\binom{100}{50} = 100891344545564193334812497256$.\n", "\n", "However, even in that case there's a pretty simple workaround: finding $n$ and $r$ such that\n", "$$\\binom{n}{r} > 1000000$$\n", "is the same as finding $n$ and $r$ such that\n", "$$\\log{\\binom{n}{r}} > \\log{1000000}$$\n", "By applying the definition of the binomial coefficients and [logarithmic identities](https://en.wikipedia.org/wiki/List_of_logarithmic_identities), this turns to\n", "$$\\log{n!} - \\log{r!} - \\log{(n-r)!} > \\log{1000000}$$\n", "$\\log{100!} \\approx 363.739$, nowhere close to overflowing a float.\n", "\n", "$\\log{n!}$ can be computed in a number of ways. You can use the [log-gamma function](https://en.wikipedia.org/wiki/Gamma_function), or you can implement a function yourself, either by applying logarithmic identities again:\n", "$$\\log{n!} = \\log{1} + \\log{2} + \\log{3} \\cdots + \\log{n}$$\n", "or by using [Stirling's approximation](https://en.wikipedia.org/wiki/Stirling%27s_approximation):\n", "$$\\log{n!} \\approx \\left(n + \\frac{1}{2}\\right)\\log{n} - n + \\frac{1}{2}\\log{2\\pi}$$\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }