{ "cells": [ { "cell_type": "markdown", "id": "7edea8e5", "metadata": {}, "source": [ "# [Spiral Primes](https://projecteuler.net/problem=58)\n", "\n", "It's the return of the Ulam spiral from [problem 28](https://projecteuler.net/problem=28) (this time we're going counter-clockwise, but that doesn't actually affect much).\n", "\n", "We can handle this problem with a couple of easy-to-derive formulas. First, for a spiral with side length $n$ (note that $n$ must be odd), the number of diagonal entries is $2n-1$. Furthermore, the outermost diagonal entries will be $n^2$, $n^2 - (n-1)$, $n^2 - 2(n-1)$, and $n^2 - 3(n-1)$.\n", "\n", "With these facts, we can just iterate over odd values of $n$ and calculate the four outermost diagonal entries. We'll keep a running total $p$ of how many primes we see and stop when $\\frac{p}{2n-1} < 0.1$." ] }, { "cell_type": "code", "execution_count": 1, "id": "4480be30", "metadata": {}, "outputs": [], "source": [ "def diagonal(n, k): return n^2 - k*(n-1)" ] }, { "cell_type": "code", "execution_count": 2, "id": "025d7d4b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "26241" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from itertools import count\n", "\n", "p = 0\n", "for n in count(3, 2):\n", " for k in range(0, 4):\n", " if is_prime(diagonal(n, k)):\n", " p += 1\n", " \n", " if p / (2*n - 1) < 0.1:\n", " break\n", "\n", "n" ] }, { "cell_type": "markdown", "id": "f181c6ae", "metadata": {}, "source": [ "## Relevant sequences\n", "* Numbers on diagonals: [A200975](https://oeis.org/A200975)\n", "* Primes at right-angle turns on the Ulam spiral: [A172979](https://oeis.org/A172979)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }