{ "cells": [ { "cell_type": "markdown", "id": "bdec47c4", "metadata": {}, "source": [ "# [Convergents of $e$](https://projecteuler.net/problem=65)\n", "\n", "Easy one-liner in SageMath." ] }, { "cell_type": "code", "execution_count": 1, "id": "8a93028c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "272" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(continued_fraction(e).convergent(99).numerator().digits())" ] }, { "cell_type": "markdown", "id": "396468b7", "metadata": {}, "source": [ "To compute the convergents ourselves, we'll first make a generator for the partial denominators of the continued fraction of $e$." ] }, { "cell_type": "code", "execution_count": 2, "id": "bedc34c8", "metadata": {}, "outputs": [], "source": [ "from itertools import count, chain\n", "\n", "def partial_denominators_e():\n", " yield 2\n", " yield from chain.from_iterable((1, 2 * k, 1) for k in count(1))" ] }, { "cell_type": "markdown", "id": "33288cd0", "metadata": {}, "source": [ "Then we'll apply a simple algorithm for computing [convergents using the partial denominators](https://en.wikipedia.org/wiki/Simple_continued_fraction) (outside of SageMath, you might want to use a [fraction type](https://docs.python.org/3/library/fractions.html))." ] }, { "cell_type": "code", "execution_count": 3, "id": "1f7bab23", "metadata": {}, "outputs": [], "source": [ "def convergents(partial_denoms):\n", " h, hprev = 1, 0\n", " k, kprev = 0, 1\n", " for b in partial_denoms:\n", " h, hprev = b * h + hprev, h\n", " k, kprev = b * k + kprev, k\n", " yield h/k" ] }, { "cell_type": "markdown", "id": "99b790f3", "metadata": {}, "source": [ "Now just iterate until we reach the 100th convergent." ] }, { "cell_type": "code", "execution_count": 4, "id": "5b8189b7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "272" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for (i, c) in enumerate(convergents(partial_denominators_e())):\n", " if i == 99:\n", " break\n", "\n", "sum(c.numerator().digits())" ] }, { "cell_type": "markdown", "id": "5778175d", "metadata": {}, "source": [ "## Relevant sequences\n", "* Numerators of convergents of $e$: [A007676](https://oeis.org/A007676)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }