{ "cells": [ { "cell_type": "markdown", "id": "ca2d9c5a", "metadata": {}, "source": [ "# [Diophantine Equation](https://projecteuler.net/problem=66)\n", "\n", "SageMath can solve these [Diophantine equations](https://en.wikipedia.org/wiki/Diophantine_equation) for us. For equations of the form $x^2 - Dy^2 = 1$ (which are called [Pell equations](https://en.wikipedia.org/wiki/Pell%27s_equation)), it will give parameterizations in $t$ for both $x$ and $y$. Here's $D=2$ as an example:" ] }, { "cell_type": "code", "execution_count": 1, "id": "d6c3ebd4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(sqrt(2)*(2*sqrt(2) + 3)^t - sqrt(2)*(-2*sqrt(2) + 3)^t + 3/2*(2*sqrt(2) + 3)^t + 3/2*(-2*sqrt(2) + 3)^t,\n", " -3/4*sqrt(2)*(2*sqrt(2) + 3)^t + 3/4*sqrt(2)*(-2*sqrt(2) + 3)^t - (2*sqrt(2) + 3)^t - (-2*sqrt(2) + 3)^t),\n", " (-sqrt(2)*(2*sqrt(2) + 3)^t + sqrt(2)*(-2*sqrt(2) + 3)^t - 3/2*(2*sqrt(2) + 3)^t - 3/2*(-2*sqrt(2) + 3)^t,\n", " 3/4*sqrt(2)*(2*sqrt(2) + 3)^t - 3/4*sqrt(2)*(-2*sqrt(2) + 3)^t + (2*sqrt(2) + 3)^t + (-2*sqrt(2) + 3)^t)]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('x,y')\n", "solve_diophantine(x^2 - 2*y^2 == 1)" ] }, { "cell_type": "markdown", "id": "519c091f", "metadata": {}, "source": [ "$t=0$ seems to correspond to the minimal solution we are after." ] }, { "cell_type": "code", "execution_count": 2, "id": "4b9b6240", "metadata": {}, "outputs": [], "source": [ "def minimal_solution(d):\n", " sols = solve_diophantine(x^2 - d*y^2 == 1)\n", " u, v = sols[0]\n", " return (abs(u(t=0)), abs(v(t=0)))" ] }, { "cell_type": "markdown", "id": "42ba15f7", "metadata": {}, "source": [ "Now we can just iterate (although it is pretty slow)." ] }, { "cell_type": "code", "execution_count": 3, "id": "300b1afb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "661" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max((d for d in range(1, 1001) if not is_square(d)), key=lambda k: minimal_solution(k)[0])" ] }, { "cell_type": "markdown", "id": "b16636f7", "metadata": {}, "source": [ "Let's dig a little deeper so we can optimize.\n", "\n", "## Solving Pell equations\n", "Lagrange proved that if $(x_0, y_0)$ is a solution to\n", "$$x^2 - dy^2 = 1$$\n", "then $\\frac{x_0}{y_0}$ is a [convergent of the continued fraction](https://en.wikipedia.org/wiki/Simple_continued_fraction) of $\\sqrt{d}$. Specifically, if $p$ is the period of the continued fraction, then the first solution will be the $(p-1)$th convergent if $p$ is even, and the $(2p-1)$th convergent if $p$ is odd.\n", "\n", "This is great for us, since there are algorithms to compute these convergents. We'll use SageMath here; see [problem 64](https://projecteuler.net/problem=64) for how to compute the partial denominators of the continued fraction of a square root, and see [problem 65](https://projecteuler.net/problem=65) for an algorithm that uses partial denominators to compute convergents of continued fractions (SageMath's constructions make this implementation a little slow, but it makes the code easier to read - and it's still considerably faster than using `solve_diophantine`)." ] }, { "cell_type": "code", "execution_count": 4, "id": "5d95125c", "metadata": {}, "outputs": [], "source": [ "def pell_fundamental_solution(d):\n", " K. = QuadraticField(d)\n", " f = continued_fraction(s)\n", " p = f.period_length()\n", " if p % 2 == 0:\n", " n = p - 1\n", " else:\n", " n = 2 * p - 1\n", " \n", " x, y = f.convergent(n).as_integer_ratio()\n", " return x, y" ] }, { "cell_type": "markdown", "id": "b0bec674", "metadata": {}, "source": [ "Now we'll just iterate with this function instead." ] }, { "cell_type": "code", "execution_count": 5, "id": "03d7ba9d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "661" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max((d for d in range(1, 1001) if not is_square(d)), key=lambda x: pell_fundamental_solution(x)[0])" ] }, { "cell_type": "markdown", "id": "3f573e65", "metadata": {}, "source": [ "And in case you want to know the minimal $x$ for $x^2 - 661y^2 = 1$:" ] }, { "cell_type": "code", "execution_count": 6, "id": "b4b119a0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(16421658242965910275055840472270471049, 638728478116949861246791167518480580)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pell_fundamental_solution(661)" ] }, { "cell_type": "markdown", "id": "cfb42d20", "metadata": {}, "source": [ "## Relevant sequences\n", "* Minimal values of $x$ for solutions to the Pell equation: [A002350](https://oeis.org/A002350)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }