{ "cells": [ { "cell_type": "markdown", "id": "3aeab8bf", "metadata": {}, "source": [ "# [Square Root Digital Expansion](https://projecteuler.net/problem=80)\n", "\n", "Unfortunately, just calling Python's `sqrt` won't cut it - floats don't have nearly enough digits of precision.\n", "\n", "The easiest approach here is to use SageMath's arbitrary precision routines, or Python's [decimal](https://docs.python.org/3/library/decimal.html) package. We need to watch for rounding issues, so we'll calculate slightly more than 100 digits and truncate." ] }, { "cell_type": "code", "execution_count": 1, "id": "b1d58be8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "40886" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def digital_sum(n):\n", " s = sqrt(n).n(digits=110)\n", " digits = (int(d) for d in str(s)[:101] if d != '.')\n", " return sum(digits)\n", " \n", "\n", "sum(digital_sum(n) for n in range(1, 101) if not is_square(n))" ] }, { "cell_type": "markdown", "id": "ad2b9aee", "metadata": {}, "source": [ "If you'd rather not use those tools for some reason, another simple approach is to take advantage of Python's arbitrary precision integers and calculate the [integer square root](https://en.wikipedia.org/wiki/Integer_square_root) of $n \\times 10^k$ for a sufficiently large $k$ ($k \\geq 200$ for this problem)." ] }, { "cell_type": "code", "execution_count": 2, "id": "6bd0cb0d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "40886" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def digital_sum(n):\n", " s = isqrt(n * 10^200)\n", " digits = (int(d) for d in str(s)[:100])\n", " return sum(digits)\n", " \n", "\n", "sum(digital_sum(n) for n in range(1, 101) if not is_square(n))" ] }, { "cell_type": "markdown", "id": "c193ba51", "metadata": {}, "source": [ "If you want to go the extra mile, there are several [algorithms for computing square roots](https://en.wikipedia.org/wiki/Square_root_algorithms) that you can implement yourself, such as Heron's method, which is a special case of [Newton's method](https://en.wikipedia.org/wiki/Newton%27s_method) for solving $x^2 - n = 0$. The method works by starting with an initial estimate $x_0$ (such as $\\frac{n}{2}$), then repeatedly calculating\n", "$$x_{k+1} = \\frac{1}{2}\\left(x_k + \\frac{n}{x_k}\\right)$$\n", "until $|x_{k+1} - x_k|$ is sufficiently small. For computing the integer square root, this can be when $|x_{k+1} - x_k| < 1$.\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }