{ "cells": [ { "cell_type": "markdown", "id": "c102f0bb", "metadata": {}, "source": [ "# [Cuboid Route](https://projecteuler.net/problem=86)\n", "\n", "Suppose you have a cuboid with side lengths $a \\leq b \\leq M$. Then the shortest route will be $\\sqrt{(a + b)^2 + M^2}$. We're interested in when this distance is an integer.\n", "\n", "However, rather than iterate through values of $a$, $b$, and $M$, we can be more efficient by iterating through values of $M$, then values of $s$, where $s \\leq 2M$. If $s^2 + M^2$ is a square number, then that means any $a,b$ such that $s = a+b$ and $a \\leq b \\leq M$ will correspond to an $a \\times b \\times M$ cuboid with integer shortest route.\n", "\n", "So, if $s = a + b$, naturally $b = s - a$, and we want to know how many values of $a$ satisfy $1 \\leq a \\leq s - a \\leq M$. We can derive four bounds on $a$ from this.\n", "* $1 \\leq a$\n", "* $s - M \\leq a$\n", "* $a \\leq \\frac{s}{2}$\n", "* $a \\leq M$\n", "\n", "From these bounds, we can get the number of cuboids that can be constructed from an $(s, M)$ pair." ] }, { "cell_type": "code", "execution_count": 1, "id": "6ce96a6e", "metadata": {}, "outputs": [], "source": [ "def leg_splits(s, M):\n", " max_a = min(M, s // 2 + 1)\n", " min_a = max(s - M, 1)\n", " return max_a - min_a" ] }, { "cell_type": "markdown", "id": "00e62dfc", "metadata": {}, "source": [ "Then we can write a function to find the number of cuboids with at least one edge equaling $M$." ] }, { "cell_type": "code", "execution_count": 2, "id": "caf59499", "metadata": {}, "outputs": [], "source": [ "def count_cuboids(M):\n", " return sum(leg_splits(s, M) for s in range(1, 2 * M + 1) if is_square(s^2 + M^2))" ] }, { "cell_type": "markdown", "id": "d110565c", "metadata": {}, "source": [ "To get our answer, we just compute a running total and stop when it exceeds one million." ] }, { "cell_type": "code", "execution_count": 3, "id": "984b7665", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1818" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from itertools import count\n", "\n", "total = 0\n", "for M in count(1):\n", " total += count_cuboids(M)\n", " if total > 1000000:\n", " break\n", " \n", "M" ] }, { "cell_type": "markdown", "id": "488ec2af", "metadata": {}, "source": [ "## Relevant sequences\n", "* Number of pairs $a,b$ such that $(a+b)^2 + n^2$ is square: [A143714](https://oeis.org/A143714)\n", "* Partial sums of A143714: [A143715](https://oeis.org/A143715)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }