{ "cells": [ { "cell_type": "markdown", "id": "dcfe1d77", "metadata": {}, "source": [ "# [Right Triangles with Integer Coordinates](https://projecteuler.net/problem=91)\n", "\n", "We'll start by generating all the possible values of $P$ and $Q$." ] }, { "cell_type": "code", "execution_count": 1, "id": "cba05ca7", "metadata": {}, "outputs": [], "source": [ "limit = 50\n", "points = ((x, y) for x in range(0, limit + 1) for y in range(0, limit + 1) if (x, y) != (0, 0))" ] }, { "cell_type": "markdown", "id": "90cb43dd", "metadata": {}, "source": [ "If we think about $P$ and $Q$ as vectors instead of points, we can solve this problem with [dot products](https://en.wikipedia.org/wiki/Dot_product). Since the dot product of orthogonal vectors is 0, we can check for a right angle in the triangle by seeing if $\\vec{P} \\cdot \\vec{Q} = 0$, $\\vec{P} \\cdot (\\vec{Q} - \\vec{P}) = 0$, or $\\vec{Q} \\cdot (\\vec{Q} - \\vec{P}) = 0$. By distributing in the last two equations, we can simply check if $\\vec{P} \\cdot \\vec{Q}$ equals 0, $\\vec{P} \\cdot \\vec{P}$, or $\\vec{Q} \\cdot \\vec{Q}$." ] }, { "cell_type": "code", "execution_count": 2, "id": "18e334eb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14234" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from itertools import combinations\n", "\n", "triangles = set()\n", "for ((x1, y1), (x2, y2)) in combinations(points, 2):\n", " d = x1 * x2 + y1 * y2\n", " if d == 0 or d == x1^2 + y1^2 or d == x2^2 + y2^2:\n", " triangles.add(((x1, y1), (x2, y2)))\n", " \n", "len(triangles)" ] }, { "cell_type": "markdown", "id": "35a4a234", "metadata": {}, "source": [ "## Relevant sequences\n", "* Answers for limits of 0, 1, 2, ...: [A155154](https://oeis.org/A155154)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }