{ "cells": [ { "cell_type": "markdown", "id": "a84baacf", "metadata": {}, "source": [ "# [Amicable Chains](https://projecteuler.net/problem=95)\n", "\n", "Numbers that form an amicable chain are called [sociable numbers](https://en.wikipedia.org/wiki/Sociable_number). Interestingly, the [Catalan-Dickson conjecture](https://en.wikipedia.org/wiki/Aliquot_sequence) posits that *every* starting number eventually reaches either 0 or a sociable number.\n", "\n", "Regardless, we can find these chains very cleanly, albeit somewhat slowly, with SageMath's graph tooling and `divisors` function. Simply add a directed edge from every number to its aliquot sum, assuming both are below 1000000." ] }, { "cell_type": "code", "execution_count": 1, "id": "f047494c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Looped digraph on 965607 vertices (use the .plot() method to plot)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "limit = 1000000\n", "G = DiGraph(loops=True)\n", "for n in range(1, limit + 1):\n", " s = sum(divisors(n)) - n\n", " if s <= limit:\n", " G.add_edge(n, s)\n", " \n", "G" ] }, { "cell_type": "markdown", "id": "38ac2d0e", "metadata": {}, "source": [ "Once the graph is constructed, just iterate through all the cycles to get to the largest one, and get its smallest number." ] }, { "cell_type": "code", "execution_count": 2, "id": "8527e13c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14316" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "longest_cycle = None\n", "for cycle in G.all_cycles_iterator(simple=True):\n", " longest_cycle = cycle\n", " \n", "min(longest_cycle)" ] }, { "cell_type": "markdown", "id": "9bf72629", "metadata": {}, "source": [ "Another interesting fact: the amicable chain we've found here is not just the longest chain composed of numbers below 1000000 - it's actually the longest known amicable chain, *period*.\n", "\n", "## Relevant sequences\n", "* Smallest members of amicable chains: [A003416](https://oeis.org/A003416)\n", "* The amicable chain containing this problem's answer: [A072890](https://oeis.org/A072890)\n", "\n", "#### Copyright (C) 2025 filifa\n", "\n", "This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }