{ "cells": [ { "cell_type": "markdown", "id": "a39ba505", "metadata": {}, "source": [ "# Sum Square Difference\n", "> The sum of the squares of the first ten natural numbers is,\n", "> $$1^2 + 2^2 + \\cdots + 10^2 = 385$$\n", "> The square of the sum of the first ten natural numbers is,\n", "> $$(1 + 2 + \\cdots + 10)^2 = 55^2 = 3025$$\n", "> Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is $3025 - 385 = 2640$.\n", "> \n", "> Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.\n", "\n", "In [problem 1](https://projecteuler.net/problem=1), we applied the following formula for [triangular numbers](https://en.wikipedia.org/wiki/Triangular_number):\n", "$$\\sum_{k=1}^n k = \\frac{n(n+1)}{2}$$\n", "We can apply it again here and determine that\n", "$$(1 + 2 + 3 + \\cdots + 100)^2 = \\left(\\frac{100(101)}{2}\\right)^2 = 25502500$$\n", "\n", "A similar formula exists for computing [sums of squares](https://en.wikipedia.org/wiki/Square_pyramidal_number):\n", "$$\\sum_{k=1}^n k^2 = \\frac{n(n+1)(2n+1)}{6}$$\n", "(In fact, [Faulhaber's formula](https://en.wikipedia.org/wiki/Faulhaber%27s_formula) gives a formula for the sum of $k$th powers, but we obviously only need the cases $k=1$ and $k=2$ for this problem.) Consequently,\n", "$$1^2 + 2^2 + 3^2 + \\cdots + 100^2 = \\frac{100(101)(201)}{6} = 338350$$\n", "\n", "Therefore, the difference is $25502500 - 338350 = 25164150$." ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }