{ "cells": [ { "cell_type": "markdown", "id": "bdec47c4", "metadata": {}, "source": [ "# [Convergents of $e$](https://projecteuler.net/problem=65)\n", "\n", "Easy one-liner in SageMath." ] }, { "cell_type": "code", "execution_count": 1, "id": "8a93028c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "272" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(continued_fraction(e).convergent(99).numerator().digits())" ] }, { "cell_type": "markdown", "id": "396468b7", "metadata": {}, "source": [ "If we wanted to compute the convergents ourselves, we could first make a generator for the partial denominators of the continued fraction of $e$." ] }, { "cell_type": "code", "execution_count": 2, "id": "bedc34c8", "metadata": {}, "outputs": [], "source": [ "from itertools import count, chain\n", "\n", "def partial_denominators_e(n):\n", " yield 2\n", " denominators = chain.from_iterable((1, 2 * k, 1) for k in count(1))\n", " for (i, b) in enumerate(denominators):\n", " if i >= n:\n", " break\n", " \n", " yield b" ] }, { "cell_type": "markdown", "id": "33288cd0", "metadata": {}, "source": [ "Then write a function for computing a continued fraction from a sequence of partial denominators (outside of SageMath, you might want to use a [fraction type](https://docs.python.org/3/library/fractions.html))." ] }, { "cell_type": "code", "execution_count": 3, "id": "1f7bab23", "metadata": {}, "outputs": [], "source": [ "def cf(denominators):\n", " a = next(denominators)\n", " \n", " try:\n", " return a + 1 / cf(denominators)\n", " except StopIteration:\n", " return a" ] }, { "cell_type": "code", "execution_count": 4, "id": "5b8189b7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "272" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum(cf(partial_denominators_e(99)).numerator().digits())" ] }, { "cell_type": "markdown", "id": "5778175d", "metadata": {}, "source": [ "## Relevant sequences\n", "* Numerators of convergents of $e$: [A007676](https://oeis.org/A007676)" ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }