{ "cells": [ { "cell_type": "markdown", "id": "ec776294", "metadata": {}, "source": [ "# [Totient Permutation](https://projecteuler.net/problem=70)\n", "\n", "SageMath's implementation of $\\phi(n)$ is fast enough that you could brute force this if you wanted, but if we're clever, we can solve more quickly.\n", "\n", "We'll write a simple function for determining if two numbers are digit permutations of each other." ] }, { "cell_type": "code", "execution_count": 1, "id": "e6757165", "metadata": {}, "outputs": [], "source": [ "def is_permutation_pair(a, b):\n", " s, t = str(a), str(b)\n", " return sorted(s) == sorted(t)" ] }, { "cell_type": "markdown", "id": "bdeb8c77", "metadata": {}, "source": [ "As in [problem 69](https://projecteuler.net/problem=69),\n", "$$\\phi(n) = n\\prod_{p | n} \\left(1 - \\frac{1}{p}\\right)$$\n", "\n", "We can calculate the totients of the numbers up to $10^7$ using a very similar approach to the [sieve of Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes) for generating prime numbers (see [problem 10](https://projecteuler.net/problem=10)).\n", "\n", "We'll initialize a list of numbers from 0 to $10^7$." ] }, { "cell_type": "code", "execution_count": 2, "id": "524fca40", "metadata": {}, "outputs": [], "source": [ "limit = 10^7\n", "totients = list(range(0, limit))" ] }, { "cell_type": "markdown", "id": "88ef58dd", "metadata": {}, "source": [ "Iterating $n$ from 2 to $10^7$, if `totients[n] == n`, then $n$ is prime, and we'll update its totient and all its multiples using the above formula. If `totients[n] != n`, then we'll check if $n/\\phi(n)$ is small and if $\\phi(n)$ is a permutation of $n$, keeping track of the best answer so far." ] }, { "cell_type": "code", "execution_count": 3, "id": "aa071cc4", "metadata": {}, "outputs": [], "source": [ "answer = None\n", "ratio = float('inf')\n", "\n", "for n in range(2, limit):\n", " if totients[n] != n:\n", " r = n / totients[n]\n", " if r < ratio and is_permutation_pair(n, totients[n]):\n", " ratio = r\n", " answer = n\n", "\n", " continue\n", "\n", " for p in range(n, limit, n):\n", " totients[p] -= totients[p] // n" ] }, { "cell_type": "code", "execution_count": 4, "id": "d4819aa5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "8319823" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "answer" ] }, { "cell_type": "markdown", "id": "40cf1e01", "metadata": {}, "source": [ "Note: lots of people in the problem thread make the assumption that the answer must be a [semiprime](https://en.wikipedia.org/wiki/Semiprime). However, Steendor points out that for certain upper bounds, this assumption does not hold. For instance, $2817 = 3^2 \\times 313$ and $\\phi(2817) = 1872$, and 2817/1872 is the lowest ratio until 2991. 2817 may be an exception rather than the norm (all the other numbers in A102018 up to $10^8$ are semiprimes); nevertheless, this solution avoids making the assumption.\n", "\n", "## Relevant sequences\n", "* All numbers $n$ such that $\\phi(n)$ is a digit permutation: [A115921](https://oeis.org/A115921)\n", "* Subsequence of A115921 such that $n/\\phi(n)$ is a record low: [A102018](https://oeis.org/A102018)" ] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.5", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }