eulerbooks/notebooks/problem0006.ipynb

54 lines
2.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "a39ba505",
"metadata": {},
"source": [
"# [Sum Square Difference](https://projecteuler.net/problem=6)\n",
"\n",
"In [problem 1](https://projecteuler.net/problem=1), we applied the following formula for [triangular numbers](https://en.wikipedia.org/wiki/Triangular_number):\n",
"$$1 + 2 + 3 + \\cdots + n = \\frac{n(n+1)}{2}$$\n",
"We can apply it again here and determine that\n",
"$$(1 + 2 + 3 + \\cdots + 100)^2 = \\left(\\frac{100(101)}{2}\\right)^2 = 25502500$$\n",
"\n",
"A similar formula exists for computing sums of squares, also called the [square pyramidal numbers](https://en.wikipedia.org/wiki/Square_pyramidal_number):\n",
"$$1^2 + 2^2 + 3^2 + \\cdots + n^2 = \\frac{n(n+1)(2n+1)}{6}$$\n",
"(In fact, [Faulhaber's formula](https://en.wikipedia.org/wiki/Faulhaber%27s_formula) gives a formula for the sum of $k$th powers, but we obviously only need the cases $k=1$ and $k=2$ for this problem.) Consequently,\n",
"$$1^2 + 2^2 + 3^2 + \\cdots + 100^2 = \\frac{100(101)(201)}{6} = 338350$$\n",
"\n",
"Therefore, the difference is $25502500 - 338350 = 25164150$.\n",
"\n",
"## Relevant sequences\n",
"* Triangular numbers: [A000217](https://oeis.org/A000217)\n",
"* Square pyramidal numbers: [A000330](https://oeis.org/A000330)\n",
"\n",
"#### Copyright (C) 2025 filifa\n",
"\n",
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}