180 lines
4.3 KiB
Plaintext
180 lines
4.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a22e7878",
|
|
"metadata": {},
|
|
"source": [
|
|
"# [Square Root Convergents](https://projecteuler.net/problem=57)\n",
|
|
"\n",
|
|
"Stop me if you've heard this one before: easy with SageMath."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "27ac9cdb",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"153"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"convergents = continued_fraction(sqrt(2)).convergents()\n",
|
|
"\n",
|
|
"cs = []\n",
|
|
"for c in convergents[1:1001]:\n",
|
|
" n, d = c.as_integer_ratio()\n",
|
|
" if len(n.digits()) > len(d.digits()):\n",
|
|
" cs.append(c)\n",
|
|
" \n",
|
|
"len(cs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "8cc002c4",
|
|
"metadata": {},
|
|
"source": [
|
|
"Here's how to work this yourself.\n",
|
|
"\n",
|
|
"If you were to look up the [square root of 2](https://en.wikipedia.org/wiki/Square_root_of_2), you would discover that the denominators of successive convergents of $\\sqrt{2}$ form a sequence called the [Pell numbers](https://en.wikipedia.org/wiki/Pell_number). The numerators are half of a related sequence called the Pell-Lucas numbers. We can easily make generators for these sequences from their definitions."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "58c359a1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def pell_numbers():\n",
|
|
" a, b = 0, 1\n",
|
|
" while True:\n",
|
|
" yield a\n",
|
|
" a, b = 2*a + b, a\n",
|
|
"\n",
|
|
"\n",
|
|
"def pell_lucas_numbers():\n",
|
|
" a, b = 2, 2\n",
|
|
" yield a\n",
|
|
" while True:\n",
|
|
" yield a\n",
|
|
" a, b = 2*a + b, a"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c8588bfa",
|
|
"metadata": {},
|
|
"source": [
|
|
"With these generators, we can make a generator of the convergents of $\\sqrt{2}$. We'll skip the first generated value since the first Pell number is 0."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "308eaa91",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(1, 0)"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"convergents = ((p//2, q) for (p, q) in zip(pell_lucas_numbers(), pell_numbers()))\n",
|
|
"next(convergents)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9f7817c1",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we just iterate over the convergents and check the digits."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "ee53511d",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"153"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"digits = lambda n: floor(1 + log(n, 10))\n",
|
|
"\n",
|
|
"cs = []\n",
|
|
"for (i, (p, q)) in enumerate(convergents):\n",
|
|
" if i >= 1000:\n",
|
|
" break\n",
|
|
" \n",
|
|
" if digits(p) > digits(q):\n",
|
|
" cs.append((p, q))\n",
|
|
" \n",
|
|
"len(cs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "88596f4c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Relevant sequences\n",
|
|
"* Numerators of convergents of $\\sqrt{2}$: [A001333](https://oeis.org/A001333)\n",
|
|
"* Pell numbers (denominators of convergents of $\\sqrt{2}$): [A000129](https://oeis.org/A000129)\n",
|
|
"\n",
|
|
"#### Copyright (C) 2025 filifa\n",
|
|
"\n",
|
|
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "SageMath 9.5",
|
|
"language": "sage",
|
|
"name": "sagemath"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|