eulerbooks/notebooks/problem0057.ipynb

180 lines
4.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "a22e7878",
"metadata": {},
"source": [
"# [Square Root Convergents](https://projecteuler.net/problem=57)\n",
"\n",
"Stop me if you've heard this one before: easy with SageMath."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "27ac9cdb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"153"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"convergents = continued_fraction(sqrt(2)).convergents()\n",
"\n",
"cs = []\n",
"for c in convergents[1:1001]:\n",
" n, d = c.as_integer_ratio()\n",
" if len(n.digits()) > len(d.digits()):\n",
" cs.append(c)\n",
" \n",
"len(cs)"
]
},
{
"cell_type": "markdown",
"id": "8cc002c4",
"metadata": {},
"source": [
"Here's how to work this yourself.\n",
"\n",
"If you were to look up the [square root of 2](https://en.wikipedia.org/wiki/Square_root_of_2), you would discover that the denominators of successive convergents of $\\sqrt{2}$ form a sequence called the [Pell numbers](https://en.wikipedia.org/wiki/Pell_number). The numerators are half of a related sequence called the Pell-Lucas numbers. We can easily make generators for these sequences from their definitions."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "58c359a1",
"metadata": {},
"outputs": [],
"source": [
"def pell_numbers():\n",
" a, b = 0, 1\n",
" while True:\n",
" yield a\n",
" a, b = 2*a + b, a\n",
"\n",
"\n",
"def pell_lucas_numbers():\n",
" a, b = 2, 2\n",
" yield a\n",
" while True:\n",
" yield a\n",
" a, b = 2*a + b, a"
]
},
{
"cell_type": "markdown",
"id": "c8588bfa",
"metadata": {},
"source": [
"With these generators, we can make a generator of the convergents of $\\sqrt{2}$. We'll skip the first generated value since the first Pell number is 0."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "308eaa91",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 0)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"convergents = ((p//2, q) for (p, q) in zip(pell_lucas_numbers(), pell_numbers()))\n",
"next(convergents)"
]
},
{
"cell_type": "markdown",
"id": "9f7817c1",
"metadata": {},
"source": [
"Now we just iterate over the convergents and check the digits."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ee53511d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"153"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"digits = lambda n: floor(1 + log(n, 10))\n",
"\n",
"cs = []\n",
"for (i, (p, q)) in enumerate(convergents):\n",
" if i >= 1000:\n",
" break\n",
" \n",
" if digits(p) > digits(q):\n",
" cs.append((p, q))\n",
" \n",
"len(cs)"
]
},
{
"cell_type": "markdown",
"id": "88596f4c",
"metadata": {},
"source": [
"## Relevant sequences\n",
"* Numerators of convergents of $\\sqrt{2}$: [A001333](https://oeis.org/A001333)\n",
"* Pell numbers (denominators of convergents of $\\sqrt{2}$): [A000129](https://oeis.org/A000129)\n",
"\n",
"#### Copyright (C) 2025 filifa\n",
"\n",
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}