eulerbooks/notebooks/problem0067.ipynb

95 lines
2.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "35b56ed4",
"metadata": {},
"source": [
"# [Maximum Path Sum II](https://projecteuler.net/problem=67)\n",
"\n",
"Since we took the time to find an efficient method in [problem 18](https://projecteuler.net/problem=18), we can just reuse that method here.\n",
"\n",
"So just read the triangle into a list-of-lists."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "194eef78",
"metadata": {},
"outputs": [],
"source": [
"with open(\"txt/0067_triangle.txt\") as f:\n",
" triangle = [[int(n) for n in line.split(' ')] for line in f]"
]
},
{
"cell_type": "markdown",
"id": "b39b979e",
"metadata": {},
"source": [
"Then we'll use the bottom-up method from before (you could also use the top-down method)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fa8a353f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7273"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def max_path_sum(tri):\n",
" for i in reversed(range(0, len(tri) - 1)):\n",
" for j in range(0, len(tri[i])):\n",
" tri[i][j] += max(tri[i+1][j], tri[i+1][j+1])\n",
" \n",
" return tri[0][0]\n",
"\n",
"max_path_sum(triangle)"
]
},
{
"cell_type": "markdown",
"id": "f06b0164",
"metadata": {},
"source": [
"#### Copyright (C) 2025 filifa\n",
"\n",
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}