eulerbooks/notebooks/problem0076.ipynb

103 lines
2.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "c09827d4",
"metadata": {},
"source": [
"# [Counting Summations](https://projecteuler.net/problem=76)\n",
"\n",
"We want $p(100) - 1$, where $p(n)$ is the [partition function](https://w.wiki/EoNj). We subtract 1 because $p(n)$ counts $n$ by itself as a partition of $n$, but we only want partitions composed of two or more numbers.\n",
"\n",
"Guess what? SageMath has this built-in."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1e4ff844",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"190569291"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"number_of_partitions(100) - 1"
]
},
{
"cell_type": "markdown",
"id": "d06d7ff2",
"metadata": {},
"source": [
"Alternatively, if we think of this problem like [problem 31](https://projecteuler.net/problem=31) - just with coins of every possible denomination instead of only a few - we can adapt any of our approaches to that problem, where we construct a generating function."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "bba7ef34",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"190569291"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"R.<x> = PowerSeriesRing(ZZ, default_prec=101)\n",
"G = 1 / prod(1 - x^n for n in range(1, 100))\n",
"G[100]"
]
},
{
"cell_type": "markdown",
"id": "681d7716",
"metadata": {},
"source": [
"## Relevant sequences\n",
"* Partition numbers: [A000041](https://oeis.org/A000041)\n",
"\n",
"#### Copyright (C) 2025 filifa\n",
"\n",
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}