128 lines
3.4 KiB
Plaintext
128 lines
3.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bcfe0c52",
|
|
"metadata": {},
|
|
"source": [
|
|
"# [Path Sum: Three Ways](https://projecteuler.net/problem=82)\n",
|
|
"\n",
|
|
"This is the same matrix as [problem 81](https://projecteuler.net/problem=81)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "098b70b9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open(\"txt/0082_matrix.txt\") as f:\n",
|
|
" mat = matrix((int(n) for n in line.split(',')) for line in f)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aaf2f803",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can reuse our solution from problem 81 as well, with some slight modifications.\n",
|
|
"1. Instead of our queue initially containing only the top-left entry of the matrix, it will initially hold *all* the entries from the first column.\n",
|
|
"2. Additionally, instead of checking if we've reached the bottom-right entry, we'll stop on reaching *any entry* in the last column.\n",
|
|
"3. Finally, when adding new entries to the queue, we'll add the entry *above* our current entry, along with the entries to the right and below, as before."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "3b7872ef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import heapq\n",
|
|
"\n",
|
|
"def minimal_path_sum(mat):\n",
|
|
" m, n = mat.dimensions()\n",
|
|
" \n",
|
|
" destinations = {(i, n - 1) for i in range(0, m)}\n",
|
|
" visited = set()\n",
|
|
" queue = [(0, (i, 0)) for i in range(0, m)]\n",
|
|
" while queue != []:\n",
|
|
" cost, (i, j) = heapq.heappop(queue)\n",
|
|
" \n",
|
|
" if (i, j) in visited:\n",
|
|
" continue\n",
|
|
" visited.add((i, j))\n",
|
|
" \n",
|
|
" cost += mat[i, j]\n",
|
|
" \n",
|
|
" if (i, j) in destinations:\n",
|
|
" break\n",
|
|
" \n",
|
|
" if i - 1 >= 0:\n",
|
|
" heapq.heappush(queue, (cost, (i - 1, j)))\n",
|
|
" \n",
|
|
" if i + 1 < m:\n",
|
|
" heapq.heappush(queue, (cost, (i + 1, j)))\n",
|
|
" \n",
|
|
" if j + 1 < n:\n",
|
|
" heapq.heappush(queue, (cost, (i, j + 1)))\n",
|
|
" \n",
|
|
" return cost"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "62aba318",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"260324"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"minimal_path_sum(mat)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "db7b11ca",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Copyright (C) 2025 filifa\n",
|
|
"\n",
|
|
"This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International license](https://creativecommons.org/licenses/by-sa/4.0/) and the [BSD Zero Clause license](https://spdx.org/licenses/0BSD.html)."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "SageMath 9.5",
|
|
"language": "sage",
|
|
"name": "sagemath"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|