eulerbooks/notebooks/problem0070.ipynb

142 lines
3.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "ec776294",
"metadata": {},
"source": [
"# [Totient Permutation](https://projecteuler.net/problem=70)\n",
"\n",
"SageMath's implementation of $\\phi(n)$ is fast enough that you could brute force this if you wanted, but if we're clever, we can solve more quickly.\n",
"\n",
"We'll write a simple function for determining if two numbers are digit permutations of each other."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e6757165",
"metadata": {},
"outputs": [],
"source": [
"def is_permutation_pair(a, b):\n",
" s, t = str(a), str(b)\n",
" return sorted(s) == sorted(t)"
]
},
{
"cell_type": "markdown",
"id": "bdeb8c77",
"metadata": {},
"source": [
"As in [problem 69](https://projecteuler.net/problem=69),\n",
"$$\\phi(n) = n\\prod_{p | n} \\left(1 - \\frac{1}{p}\\right)$$\n",
"\n",
"Rather than calculate the totients of every single number up to $10^7$, we'll start with just the primes - for a prime $p$, $\\phi(p) = p-1$. We'll store these primes in a [min-heap](https://en.wikipedia.org/wiki/Heap_(data_structure)) ordered by $\\frac{p}{\\phi(p)}$."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "244e05bd",
"metadata": {},
"outputs": [],
"source": [
"import heapq\n",
"\n",
"limit = 10^7\n",
"\n",
"primes = prime_range(limit)\n",
"queue = [(p / (p - 1), (p, p - 1)) for p in primes]\n",
"heapq.heapify(queue)"
]
},
{
"cell_type": "markdown",
"id": "9a057da0",
"metadata": {},
"source": [
"Then we'll search to find the value $n$ with the smallest ratio that is also a digit permutation of its totient. We'll check composite values by pushing $np$ to the queue for each prime $p$.\n",
"\n",
"When we find a value that is a digit permutation of its totient, we'll know that it also has the smallest ratio and can stop."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "99c4267a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8319823"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"answer = None\n",
"visited = set()\n",
"while queue != []:\n",
" _, (n, totient) = heapq.heappop(queue)\n",
" \n",
" if n in visited:\n",
" continue\n",
" visited.add(n)\n",
" \n",
" if is_permutation_pair(n, totient):\n",
" answer = n\n",
" break\n",
" \n",
" for p in primes:\n",
" q = n * p\n",
" if q >= limit:\n",
" break\n",
" \n",
" if n % p != 0:\n",
" new_totient = totient * (p - 1)\n",
" else:\n",
" new_totient = totient * p\n",
" \n",
" ratio = q / new_totient\n",
" heapq.heappush(queue, (ratio, (q, new_totient)))\n",
" \n",
"answer"
]
},
{
"cell_type": "markdown",
"id": "40cf1e01",
"metadata": {},
"source": [
"Note: lots of people in the problem thread make the assumption that the answer must be a [semiprime](https://en.wikipedia.org/wiki/Semiprime). However, Steendor points out that for certain upper bounds, this assumption does not hold. This solution avoids making that assumption."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}