mathtools/internal/lib/discreteLog.go

84 lines
2.0 KiB
Go
Raw Permalink Normal View History

2025-09-30 01:52:52 +00:00
/*
Copyright © 2025 filifa
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package lib
import (
"errors"
"fmt"
"math/big"
)
// whyyyy doesn't math/big have a ceil functionnnn
func ceilSqrt(x *big.Int) *big.Int {
z := new(big.Int).Sqrt(x)
s := new(big.Int).Exp(z, big.NewInt(2), nil)
if s.Cmp(x) != 0 {
z.Add(z, big.NewInt(1))
}
return z
}
2025-10-01 03:58:28 +00:00
/*
BabyStepGiantStep computes i such that b^i = x (mod n). For more efficient computation, provide the order of the group (i.e. totient(n)).
*/
2025-09-30 01:52:52 +00:00
func BabyStepGiantStep(n, b, x, order *big.Int) (*big.Int, error) {
2025-10-01 03:58:28 +00:00
// TODO: this function be extended to work with n, b not coprime
// https://cp-algorithms.com/algebra/discrete-log.html
2025-09-30 01:52:52 +00:00
z := new(big.Int).GCD(nil, nil, b, n)
if z.Cmp(big.NewInt(1)) != 0 {
return nil, fmt.Errorf("base %v and modulus %v are not coprime", b, n)
}
var m *big.Int
if order == nil {
// m = ceil(sqrt(n - 1))
z := big.NewInt(1)
z.Sub(n, z)
m = ceilSqrt(z)
} else {
m = ceilSqrt(order)
}
table := make(map[string]*big.Int)
for j := big.NewInt(1); j.Cmp(m) <= 0; j.Add(j, big.NewInt(1)) {
a := new(big.Int).Exp(b, j, n)
table[a.String()] = new(big.Int).Set(j)
}
// p = b^-m modulo n
p := new(big.Int).Neg(m)
p.Exp(b, p, n)
gamma := new(big.Int).Set(x)
for i := big.NewInt(0); i.Cmp(m) == -1; i.Add(i, big.NewInt(1)) {
j, ok := table[gamma.String()]
if ok {
i.Mul(i, m)
i.Add(i, j)
return i, nil
}
gamma.Mul(gamma, p)
gamma.Mod(gamma, n)
}
return nil, errors.New("no solution")
}