mathtools/cmd/primeOmega.go

71 lines
1.9 KiB
Go
Raw Normal View History

2025-09-20 18:07:45 +00:00
/*
Copyright © 2025 filifa
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package cmd
import (
"fmt"
"github.com/spf13/cobra"
2025-09-30 01:52:52 +00:00
"scm.dairydemon.net/filifa/mathtools/internal/lib"
2025-09-20 18:07:45 +00:00
)
var primeOmegaN uint
2025-09-20 18:47:39 +00:00
var primeOmegaMul bool
2025-09-20 18:07:45 +00:00
func primeOmega(cmd *cobra.Command, args []string) {
2025-09-30 01:52:52 +00:00
ch := lib.PrimeOmegaSieve(primeOmegaN, primeOmegaMul)
2025-09-20 18:07:45 +00:00
for i := 0; ; i++ {
v, ok := <-ch
if !ok {
break
}
if i == 0 {
continue
}
fmt.Println(v)
}
}
// primeOmegaCmd represents the primeOmega command
var primeOmegaCmd = &cobra.Command{
Use: "prime-omega -n N",
Short: "",
Long: ``,
Run: primeOmega,
}
func init() {
sieveCmd.AddCommand(primeOmegaCmd)
// Here you will define your flags and configuration settings.
// Cobra supports Persistent Flags which will work for this command
// and all subcommands, e.g.:
// primeOmegaCmd.PersistentFlags().String("foo", "", "A help for foo")
// Cobra supports local flags which will only run when this command
// is called directly, e.g.:
// primeOmegaCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle")
primeOmegaCmd.Flags().UintVarP(&primeOmegaN, "limit", "n", 0, "upper limit")
primeOmegaCmd.MarkFlagRequired("limit")
2025-09-20 18:47:39 +00:00
primeOmegaCmd.Flags().BoolVarP(&primeOmegaMul, "with-multiplicity", "m", false, "count prime factors with multiplicity")
2025-09-20 18:07:45 +00:00
}