2025-08-28 02:37:45 +00:00
/ *
Copyright © 2025 filifa
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
* /
package lib
import (
"math/big"
)
2025-09-17 02:23:39 +00:00
// given a slice where vals[i] = Stirling1(i+k-1, k-1) for a given k, nextStirling1 updates the slice so vals[i] = Stirling1(i+k, k) using the property that Stirling1(n, k) = -(n-1)*Stirling1(n-1, k) + Stirling1(n-1, k-1)
func nextStirling1 ( k int , vals [ ] * big . Int ) {
for i := 1 ; i < len ( vals ) ; i ++ {
n := int64 ( k + i - 1 )
v := big . NewInt ( - n )
v . Mul ( v , vals [ i - 1 ] )
vals [ i ] . Add ( vals [ i ] , v )
2025-08-28 02:37:45 +00:00
}
2025-09-17 02:23:39 +00:00
}
2025-08-28 02:37:45 +00:00
2025-09-17 02:23:39 +00:00
func Stirling1 ( n , k int ) * big . Int {
if k > n {
2025-08-28 02:37:45 +00:00
return big . NewInt ( 0 )
}
2025-09-17 02:23:39 +00:00
vals := make ( [ ] * big . Int , n - k + 1 )
for i := range vals {
vals [ i ] = big . NewInt ( 0 )
}
vals [ 0 ] = big . NewInt ( 1 )
2025-08-28 02:37:45 +00:00
2025-09-17 02:23:39 +00:00
for i := 1 ; i <= k ; i ++ {
nextStirling1 ( i , vals )
}
2025-08-28 02:37:45 +00:00
2025-09-17 02:23:39 +00:00
return vals [ n - k ]
2025-08-28 02:37:45 +00:00
}
2025-09-17 02:23:39 +00:00
// given a slice where vals[i] = Stirling2(i+k-1, k-1) for a given k, nextStirling2 updates the slice so vals[i] = Stirling2(i+k, k) using the property that Stirling2(n, k) = k*Stirling2(n-1, k) + Stirling2(n-1, k-1)
func nextStirling2 ( k int64 , vals [ ] * big . Int ) {
for i := 1 ; i < len ( vals ) ; i ++ {
v := big . NewInt ( k )
v . Mul ( v , vals [ i - 1 ] )
vals [ i ] . Add ( vals [ i ] , v )
2025-08-28 02:37:45 +00:00
}
2025-09-17 02:23:39 +00:00
}
2025-08-28 02:37:45 +00:00
2025-09-17 02:23:39 +00:00
func Stirling2 ( n , k int ) * big . Int {
if k > n {
2025-08-28 02:37:45 +00:00
return big . NewInt ( 0 )
}
2025-09-17 02:23:39 +00:00
vals := make ( [ ] * big . Int , n - k + 1 )
for i := range vals {
vals [ i ] = big . NewInt ( 0 )
}
vals [ 0 ] = big . NewInt ( 1 )
2025-08-28 02:37:45 +00:00
2025-09-17 02:23:39 +00:00
for i := 1 ; i <= k ; i ++ {
nextStirling2 ( int64 ( i ) , vals )
}
2025-08-28 02:37:45 +00:00
2025-09-17 02:23:39 +00:00
return vals [ n - k ]
2025-08-28 02:37:45 +00:00
}