2025-09-17 04:02:28 +00:00
|
|
|
/*
|
|
|
|
|
Copyright © 2025 filifa
|
|
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
*/
|
2025-08-21 22:58:43 +00:00
|
|
|
package lib
|
|
|
|
|
|
|
|
|
|
import (
|
|
|
|
|
"errors"
|
|
|
|
|
"math/big"
|
|
|
|
|
)
|
|
|
|
|
|
2025-10-01 03:58:28 +00:00
|
|
|
/*
|
|
|
|
|
Totient is a naive implementation of Euler's totient function.
|
|
|
|
|
*/
|
2025-08-21 23:20:36 +00:00
|
|
|
func Totient(n *big.Int) *big.Int {
|
|
|
|
|
N := new(big.Int).Set(n)
|
|
|
|
|
|
|
|
|
|
phi := new(big.Int).Set(N)
|
|
|
|
|
|
|
|
|
|
sqrtn := new(big.Int).Sqrt(N)
|
|
|
|
|
for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) {
|
|
|
|
|
mod := new(big.Int).Mod(N, i)
|
|
|
|
|
if mod.Cmp(big.NewInt(0)) != 0 {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// phi -= phi // i
|
|
|
|
|
tmp := new(big.Int).Div(phi, i)
|
|
|
|
|
phi.Sub(phi, tmp)
|
|
|
|
|
|
|
|
|
|
for mod.Cmp(big.NewInt(0)) == 0 {
|
|
|
|
|
N.Div(N, i)
|
|
|
|
|
mod.Mod(N, i)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if N.Cmp(big.NewInt(1)) == 1 {
|
|
|
|
|
// phi -= phi // N
|
|
|
|
|
tmp := new(big.Int).Div(phi, N)
|
|
|
|
|
phi.Sub(phi, tmp)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return phi
|
|
|
|
|
}
|
|
|
|
|
|
2025-10-01 03:58:28 +00:00
|
|
|
/*
|
|
|
|
|
MultiplicativeOrder computes the smallest integer k such that g^k = 1 (mod modulus).
|
|
|
|
|
*/
|
2025-08-21 23:20:36 +00:00
|
|
|
func MultiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int {
|
|
|
|
|
e := new(big.Int).Set(g)
|
|
|
|
|
var k *big.Int
|
|
|
|
|
for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) {
|
|
|
|
|
e.Mul(e, g)
|
|
|
|
|
e.Mod(e, modulus)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return k
|
|
|
|
|
}
|
|
|
|
|
|
2025-10-01 03:58:28 +00:00
|
|
|
/*
|
|
|
|
|
PrimitiveRoot computes a primitive root modulo modulus.
|
|
|
|
|
*/
|
2025-08-21 23:20:36 +00:00
|
|
|
func PrimitiveRoot(modulus *big.Int) (*big.Int, error) {
|
|
|
|
|
if modulus.Cmp(big.NewInt(1)) == 0 {
|
|
|
|
|
return big.NewInt(0), nil
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
phi := Totient(modulus)
|
|
|
|
|
|
|
|
|
|
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
|
|
|
|
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
|
|
|
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
order := MultiplicativeOrder(g, modulus)
|
|
|
|
|
if order.Cmp(phi) == 0 {
|
|
|
|
|
return g, nil
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return nil, errors.New("no primitive root")
|
|
|
|
|
}
|
|
|
|
|
|
2025-10-01 03:58:28 +00:00
|
|
|
/*
|
|
|
|
|
PrimitiveRootFast computes a primitive root modulo modulus, utilizing the prime factorization of the totient of the modulus to find a solution more efficiently.
|
|
|
|
|
*/
|
2025-08-21 23:52:05 +00:00
|
|
|
func PrimitiveRootFast(modulus *big.Int, tpf map[string]*big.Int) (*big.Int, error) {
|
2025-08-21 23:20:36 +00:00
|
|
|
phi := big.NewInt(1)
|
2025-08-21 23:52:05 +00:00
|
|
|
for p, exp := range tpf {
|
|
|
|
|
pow, ok := new(big.Int).SetString(p, 10)
|
2025-08-21 23:20:36 +00:00
|
|
|
if !ok {
|
2025-08-21 23:52:05 +00:00
|
|
|
return nil, errors.New("invalid factor " + p)
|
2025-08-21 23:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
2025-08-21 23:52:05 +00:00
|
|
|
pow.Exp(pow, exp, nil)
|
|
|
|
|
phi.Mul(phi, pow)
|
2025-08-21 23:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
|
|
|
|
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
|
|
|
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
2025-08-22 00:01:32 +00:00
|
|
|
if isPrimitiveRoot(g, modulus, phi, tpf) {
|
2025-08-21 23:20:36 +00:00
|
|
|
return g, nil
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return nil, errors.New("no primitive root")
|
|
|
|
|
}
|
2025-08-22 00:01:32 +00:00
|
|
|
|
|
|
|
|
func isPrimitiveRoot(g *big.Int, modulus *big.Int, phi *big.Int, tpf map[string]*big.Int) bool {
|
|
|
|
|
for p := range tpf {
|
|
|
|
|
// we already know factors are valid from computing phi
|
|
|
|
|
k, _ := new(big.Int).SetString(p, 10)
|
|
|
|
|
k.Div(phi, k)
|
|
|
|
|
k.Exp(g, k, modulus)
|
|
|
|
|
if k.Cmp(big.NewInt(1)) == 0 {
|
|
|
|
|
return false
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true
|
|
|
|
|
}
|