move primitive root functions to lib
This commit is contained in:
parent
4661e2d974
commit
0fdb60275f
|
|
@ -17,121 +17,17 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
package cmd
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log"
|
||||
"math/big"
|
||||
|
||||
"github.com/spf13/cobra"
|
||||
"scm.dairydemon.net/filifa/mathtools/internal/lib"
|
||||
)
|
||||
|
||||
var modulus string
|
||||
var tpf []string
|
||||
|
||||
func totient(n *big.Int) *big.Int {
|
||||
N := new(big.Int).Set(n)
|
||||
|
||||
phi := new(big.Int).Set(N)
|
||||
|
||||
sqrtn := new(big.Int).Sqrt(N)
|
||||
for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) {
|
||||
mod := new(big.Int).Mod(N, i)
|
||||
if mod.Cmp(big.NewInt(0)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
// phi -= phi // i
|
||||
tmp := new(big.Int).Div(phi, i)
|
||||
phi.Sub(phi, tmp)
|
||||
|
||||
for mod.Cmp(big.NewInt(0)) == 0 {
|
||||
N.Div(N, i)
|
||||
mod.Mod(N, i)
|
||||
}
|
||||
}
|
||||
|
||||
if N.Cmp(big.NewInt(1)) == 1 {
|
||||
// phi -= phi // N
|
||||
tmp := new(big.Int).Div(phi, N)
|
||||
phi.Sub(phi, tmp)
|
||||
}
|
||||
|
||||
return phi
|
||||
}
|
||||
|
||||
func multiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int {
|
||||
e := new(big.Int).Set(g)
|
||||
var k *big.Int
|
||||
for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) {
|
||||
e.Mul(e, g)
|
||||
e.Mod(e, modulus)
|
||||
}
|
||||
|
||||
return k
|
||||
}
|
||||
|
||||
func computeNaive(modulus *big.Int) (*big.Int, error) {
|
||||
if modulus.Cmp(big.NewInt(1)) == 0 {
|
||||
return big.NewInt(0), nil
|
||||
}
|
||||
|
||||
phi := totient(modulus)
|
||||
|
||||
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
||||
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
||||
if gcd.Cmp(big.NewInt(1)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
order := multiplicativeOrder(g, modulus)
|
||||
if order.Cmp(phi) == 0 {
|
||||
return g, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("no primitive root")
|
||||
}
|
||||
|
||||
func computeFromFactors(modulus *big.Int, tpf []string) (*big.Int, error) {
|
||||
phi := big.NewInt(1)
|
||||
factors := make(map[string]bool)
|
||||
for _, s := range tpf {
|
||||
p, ok := new(big.Int).SetString(s, 10)
|
||||
if !ok {
|
||||
return nil, errors.New("invalid input " + s)
|
||||
}
|
||||
|
||||
phi.Mul(phi, p)
|
||||
factors[p.Text(10)] = true
|
||||
}
|
||||
|
||||
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
||||
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
||||
if gcd.Cmp(big.NewInt(1)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
isPrimitive := true
|
||||
for p := range factors {
|
||||
e := new(big.Int)
|
||||
f, _ := new(big.Int).SetString(p, 10)
|
||||
k := new(big.Int).Div(phi, f)
|
||||
e.Exp(g, k, modulus)
|
||||
|
||||
if e.Cmp(big.NewInt(1)) == 0 {
|
||||
isPrimitive = false
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if isPrimitive {
|
||||
return g, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("no primitive root")
|
||||
}
|
||||
|
||||
func primitiveRoot(cmd *cobra.Command, args []string) {
|
||||
m, ok := new(big.Int).SetString(modulus, 10)
|
||||
if !ok {
|
||||
|
|
@ -141,12 +37,12 @@ func primitiveRoot(cmd *cobra.Command, args []string) {
|
|||
root := new(big.Int)
|
||||
var err error
|
||||
if len(tpf) == 0 {
|
||||
root, err = computeNaive(m)
|
||||
root, err = lib.PrimitiveRoot(m)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
} else {
|
||||
root, err = computeFromFactors(m, tpf)
|
||||
root, err = lib.PrimitiveRootFast(m, tpf)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -76,3 +76,107 @@ func ArePairwiseCoprime(moduli []*big.Int) bool {
|
|||
|
||||
return true
|
||||
}
|
||||
|
||||
func Totient(n *big.Int) *big.Int {
|
||||
N := new(big.Int).Set(n)
|
||||
|
||||
phi := new(big.Int).Set(N)
|
||||
|
||||
sqrtn := new(big.Int).Sqrt(N)
|
||||
for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) {
|
||||
mod := new(big.Int).Mod(N, i)
|
||||
if mod.Cmp(big.NewInt(0)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
// phi -= phi // i
|
||||
tmp := new(big.Int).Div(phi, i)
|
||||
phi.Sub(phi, tmp)
|
||||
|
||||
for mod.Cmp(big.NewInt(0)) == 0 {
|
||||
N.Div(N, i)
|
||||
mod.Mod(N, i)
|
||||
}
|
||||
}
|
||||
|
||||
if N.Cmp(big.NewInt(1)) == 1 {
|
||||
// phi -= phi // N
|
||||
tmp := new(big.Int).Div(phi, N)
|
||||
phi.Sub(phi, tmp)
|
||||
}
|
||||
|
||||
return phi
|
||||
}
|
||||
|
||||
func MultiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int {
|
||||
e := new(big.Int).Set(g)
|
||||
var k *big.Int
|
||||
for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) {
|
||||
e.Mul(e, g)
|
||||
e.Mod(e, modulus)
|
||||
}
|
||||
|
||||
return k
|
||||
}
|
||||
|
||||
func PrimitiveRoot(modulus *big.Int) (*big.Int, error) {
|
||||
if modulus.Cmp(big.NewInt(1)) == 0 {
|
||||
return big.NewInt(0), nil
|
||||
}
|
||||
|
||||
phi := Totient(modulus)
|
||||
|
||||
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
||||
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
||||
if gcd.Cmp(big.NewInt(1)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
order := MultiplicativeOrder(g, modulus)
|
||||
if order.Cmp(phi) == 0 {
|
||||
return g, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("no primitive root")
|
||||
}
|
||||
|
||||
func PrimitiveRootFast(modulus *big.Int, tpf []string) (*big.Int, error) {
|
||||
phi := big.NewInt(1)
|
||||
factors := make(map[string]bool)
|
||||
for _, s := range tpf {
|
||||
p, ok := new(big.Int).SetString(s, 10)
|
||||
if !ok {
|
||||
return nil, errors.New("invalid input " + s)
|
||||
}
|
||||
|
||||
phi.Mul(phi, p)
|
||||
factors[p.Text(10)] = true
|
||||
}
|
||||
|
||||
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
||||
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
||||
if gcd.Cmp(big.NewInt(1)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
isPrimitive := true
|
||||
for p := range factors {
|
||||
e := new(big.Int)
|
||||
f, _ := new(big.Int).SetString(p, 10)
|
||||
k := new(big.Int).Div(phi, f)
|
||||
e.Exp(g, k, modulus)
|
||||
|
||||
if e.Cmp(big.NewInt(1)) == 0 {
|
||||
isPrimitive = false
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if isPrimitive {
|
||||
return g, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("no primitive root")
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue