Compare commits
10 Commits
a9c7f8091b
...
d48e9932c1
| Author | SHA1 | Date |
|---|---|---|
|
|
d48e9932c1 | |
|
|
faa58bb4dc | |
|
|
6d74fdb5e3 | |
|
|
73c750d317 | |
|
|
85229bffe1 | |
|
|
c842762ca9 | |
|
|
df317e0837 | |
|
|
365b396db1 | |
|
|
30ad962cfd | |
|
|
26c197318e |
|
|
@ -0,0 +1,36 @@
|
||||||
|
# mathtools
|
||||||
|
mathtools is a program for computing various mathematical results that would be
|
||||||
|
tedious to compute by hand.
|
||||||
|
|
||||||
|
## Why?
|
||||||
|
Obviously, libraries, software packages, and websites exist for these sort of
|
||||||
|
calculations, but there are tradeoffs with any approach. Rather than needing to
|
||||||
|
write a script, use a REPL, or load a webpage, this allows for an approach more
|
||||||
|
like standard CLI utilities such as [GNU
|
||||||
|
factor](https://www.gnu.org/software/coreutils/factor).
|
||||||
|
|
||||||
|
Generally, I've opted to implement routines for problems that are best solved
|
||||||
|
with *algorithms*, rather than *formulas*. For instance, the quadratic formula,
|
||||||
|
while useful, is basically plug and chug, and thus isn't implemented here. On
|
||||||
|
the other hand, determining whether a number is prime is a little more tedious
|
||||||
|
to do by hand, so it's provided as a routine.
|
||||||
|
|
||||||
|
## Available routines
|
||||||
|
Available routines include:
|
||||||
|
* convergents of a periodic continued fraction
|
||||||
|
* solving systems of linear congruences with the Chinese remainder theorem
|
||||||
|
* discrete logarithm
|
||||||
|
* greatest common divisor
|
||||||
|
* primality testing
|
||||||
|
* Jacobi symbol
|
||||||
|
* modular inverse
|
||||||
|
* modular square root
|
||||||
|
* multiplicative order
|
||||||
|
* integer partitions
|
||||||
|
* solving Pell equations
|
||||||
|
* primitive root modulo n
|
||||||
|
* area of a simple polygon from vertex coordinates
|
||||||
|
* sieves for totient function, divisor function, Mobius function, and more
|
||||||
|
* repetend of the continued fraction of a square root
|
||||||
|
* Stirling numbers
|
||||||
|
* summatory functions
|
||||||
|
|
@ -32,7 +32,7 @@ func divisors(cmd *cobra.Command, args []string) {
|
||||||
bufStdout := bufio.NewWriter(os.Stdout)
|
bufStdout := bufio.NewWriter(os.Stdout)
|
||||||
defer bufStdout.Flush()
|
defer bufStdout.Flush()
|
||||||
|
|
||||||
ch := sieve.DivisorsSieve(divisorsN, divisorsE, 1000)
|
ch := sieve.Divisors(divisorsN, divisorsE, 1000)
|
||||||
for i := 0; ; i++ {
|
for i := 0; ; i++ {
|
||||||
v, ok := <-ch
|
v, ok := <-ch
|
||||||
if !ok {
|
if !ok {
|
||||||
|
|
|
||||||
|
|
@ -31,7 +31,7 @@ func mobius(cmd *cobra.Command, args []string) {
|
||||||
bufStdout := bufio.NewWriter(os.Stdout)
|
bufStdout := bufio.NewWriter(os.Stdout)
|
||||||
defer bufStdout.Flush()
|
defer bufStdout.Flush()
|
||||||
|
|
||||||
ch := sieve.MobiusSieve(mobiusN, 1000)
|
ch := sieve.Mobius(mobiusN, 1000)
|
||||||
for i := 0; ; i++ {
|
for i := 0; ; i++ {
|
||||||
v, ok := <-ch
|
v, ok := <-ch
|
||||||
if !ok {
|
if !ok {
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,75 @@
|
||||||
|
/*
|
||||||
|
Copyright © 2025 filifa
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
package cmd
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"math/big"
|
||||||
|
|
||||||
|
"github.com/spf13/cobra"
|
||||||
|
"scm.dairydemon.net/filifa/mathtools/internal/lib"
|
||||||
|
)
|
||||||
|
|
||||||
|
var multiplicativeOrderBase string
|
||||||
|
var multiplicativeOrderModulus string
|
||||||
|
|
||||||
|
func multiplicativeOrder(cmd *cobra.Command, args []string) {
|
||||||
|
g, ok := new(big.Int).SetString(multiplicativeOrderBase, 10)
|
||||||
|
if !ok {
|
||||||
|
cobra.CheckErr("invalid base " + multiplicativeOrderBase)
|
||||||
|
}
|
||||||
|
|
||||||
|
m, ok := new(big.Int).SetString(multiplicativeOrderModulus, 10)
|
||||||
|
if !ok {
|
||||||
|
cobra.CheckErr("invalid modulus " + multiplicativeOrderModulus)
|
||||||
|
}
|
||||||
|
|
||||||
|
gcd := new(big.Int).GCD(nil, nil, g, m)
|
||||||
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
||||||
|
cobra.CheckErr("base " + multiplicativeOrderBase + " and modulus " + multiplicativeOrderModulus + " are not coprime")
|
||||||
|
}
|
||||||
|
|
||||||
|
k := lib.MultiplicativeOrder(g, m)
|
||||||
|
fmt.Println(k)
|
||||||
|
}
|
||||||
|
|
||||||
|
// multiplicativeOrderCmd represents the multiplicativeOrder command
|
||||||
|
var multiplicativeOrderCmd = &cobra.Command{
|
||||||
|
Use: "multiplicative-order",
|
||||||
|
Short: "Compute multiplicative order",
|
||||||
|
Long: `Compute the multiplicative order of a number given a modulus.`,
|
||||||
|
Run: multiplicativeOrder,
|
||||||
|
}
|
||||||
|
|
||||||
|
func init() {
|
||||||
|
rootCmd.AddCommand(multiplicativeOrderCmd)
|
||||||
|
|
||||||
|
// Here you will define your flags and configuration settings.
|
||||||
|
|
||||||
|
// Cobra supports Persistent Flags which will work for this command
|
||||||
|
// and all subcommands, e.g.:
|
||||||
|
// multiplicativeOrderCmd.PersistentFlags().String("foo", "", "A help for foo")
|
||||||
|
|
||||||
|
// Cobra supports local flags which will only run when this command
|
||||||
|
// is called directly, e.g.:
|
||||||
|
// multiplicativeOrderCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle")
|
||||||
|
multiplicativeOrderCmd.Flags().StringVarP(&multiplicativeOrderBase, "base", "g", "", "base")
|
||||||
|
multiplicativeOrderCmd.Flags().StringVarP(&multiplicativeOrderModulus, "modulus", "m", "", "modulus")
|
||||||
|
|
||||||
|
multiplicativeOrderCmd.MarkFlagRequired("base")
|
||||||
|
multiplicativeOrderCmd.MarkFlagRequired("modulus")
|
||||||
|
}
|
||||||
|
|
@ -32,7 +32,7 @@ func primeOmega(cmd *cobra.Command, args []string) {
|
||||||
bufStdout := bufio.NewWriter(os.Stdout)
|
bufStdout := bufio.NewWriter(os.Stdout)
|
||||||
defer bufStdout.Flush()
|
defer bufStdout.Flush()
|
||||||
|
|
||||||
ch := sieve.PrimeOmegaSieve(primeOmegaN, primeOmegaMul, 1000)
|
ch := sieve.PrimeOmega(primeOmegaN, primeOmegaMul, 1000)
|
||||||
for i := 0; ; i++ {
|
for i := 0; ; i++ {
|
||||||
v, ok := <-ch
|
v, ok := <-ch
|
||||||
if !ok {
|
if !ok {
|
||||||
|
|
|
||||||
|
|
@ -31,7 +31,7 @@ func radical(cmd *cobra.Command, args []string) {
|
||||||
bufStdout := bufio.NewWriter(os.Stdout)
|
bufStdout := bufio.NewWriter(os.Stdout)
|
||||||
defer bufStdout.Flush()
|
defer bufStdout.Flush()
|
||||||
|
|
||||||
ch := sieve.RadicalSieve(radicalN, 1000)
|
ch := sieve.Radical(radicalN, 1000)
|
||||||
for i := 0; ; i++ {
|
for i := 0; ; i++ {
|
||||||
v, ok := <-ch
|
v, ok := <-ch
|
||||||
if !ok {
|
if !ok {
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@ import (
|
||||||
"strconv"
|
"strconv"
|
||||||
|
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
"scm.dairydemon.net/filifa/mathtools/internal/lib"
|
"scm.dairydemon.net/filifa/mathtools/lib"
|
||||||
)
|
)
|
||||||
|
|
||||||
var firstKind bool
|
var firstKind bool
|
||||||
|
|
|
||||||
|
|
@ -31,7 +31,7 @@ func totient(cmd *cobra.Command, args []string) {
|
||||||
bufStdout := bufio.NewWriter(os.Stdout)
|
bufStdout := bufio.NewWriter(os.Stdout)
|
||||||
defer bufStdout.Flush()
|
defer bufStdout.Flush()
|
||||||
|
|
||||||
for v := range sieve.TotientSieve(totientN, 1000) {
|
for v := range sieve.Totient(totientN, 1000) {
|
||||||
if v == 0 {
|
if v == 0 {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
|
||||||
3
go.mod
3
go.mod
|
|
@ -2,8 +2,9 @@ module scm.dairydemon.net/filifa/mathtools
|
||||||
|
|
||||||
go 1.24.4
|
go 1.24.4
|
||||||
|
|
||||||
|
require github.com/spf13/cobra v1.9.1
|
||||||
|
|
||||||
require (
|
require (
|
||||||
github.com/inconshreveable/mousetrap v1.1.0 // indirect
|
github.com/inconshreveable/mousetrap v1.1.0 // indirect
|
||||||
github.com/spf13/cobra v1.9.1 // indirect
|
|
||||||
github.com/spf13/pflag v1.0.6 // indirect
|
github.com/spf13/pflag v1.0.6 // indirect
|
||||||
)
|
)
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,36 @@
|
||||||
|
/*
|
||||||
|
Copyright © 2025 filifa
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
package sieve
|
||||||
|
|
||||||
|
func updateMultiples(sieve []uint, p uint, n uint, additive bool) {
|
||||||
|
for q := p; ; q *= p {
|
||||||
|
// sieve[a*b] = sieve[a] * sieve[b] if gcd(a,b) = 1
|
||||||
|
for i := 2 * q; i < n; i += q {
|
||||||
|
if i%(p*q) != 0 {
|
||||||
|
if additive {
|
||||||
|
sieve[i] += sieve[q]
|
||||||
|
} else {
|
||||||
|
sieve[i] *= sieve[q]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if p*q >= n {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -30,29 +30,10 @@ func pow(base uint, exp uint) uint {
|
||||||
return result
|
return result
|
||||||
}
|
}
|
||||||
|
|
||||||
func updateMultiples(sieve []uint, x uint, p uint, n uint) {
|
|
||||||
for q := p; ; q *= p {
|
|
||||||
// sigma_x(a*b) = sigma_x(a) * sigma_x(b) if gcd(a,b) = 1
|
|
||||||
for i := 2 * q; i < n; i += q {
|
|
||||||
if i%(p*q) != 0 {
|
|
||||||
sieve[i] *= sieve[q]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if p*q >= n {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
println(q)
|
|
||||||
|
|
||||||
// sigma_x(p^k) = p^(kx) + sigma_x(p^(k-1))
|
|
||||||
sieve[p*q] = pow(p*q, x) + sieve[q]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
DivisorSieve computes sigma_x(k) for k=1 to n, where sigma_x is the divisor sum function. x sets the power each divisor is raised to.
|
Divisors computes sigma_x(k) for k=1 to n, where sigma_x is the divisor sum function. x sets the power each divisor is raised to.
|
||||||
*/
|
*/
|
||||||
func DivisorsSieve(n uint, x uint, buflen uint) chan uint {
|
func Divisors(n uint, x uint, buflen uint) chan uint {
|
||||||
sieve := make([]uint, n)
|
sieve := make([]uint, n)
|
||||||
sieve[0] = 0
|
sieve[0] = 0
|
||||||
for i := uint(1); i < n; i++ {
|
for i := uint(1); i < n; i++ {
|
||||||
|
|
@ -69,7 +50,12 @@ func DivisorsSieve(n uint, x uint, buflen uint) chan uint {
|
||||||
}
|
}
|
||||||
|
|
||||||
sieve[i] = pow(i, x) + 1
|
sieve[i] = pow(i, x) + 1
|
||||||
updateMultiples(sieve, x, i, n)
|
for j := i; i*j < n; j *= i {
|
||||||
|
// sigma_x(p^k) = p^(kx) + sigma_x(p^(k-1))
|
||||||
|
sieve[i*j] = pow(i*j, x) + sieve[j]
|
||||||
|
}
|
||||||
|
|
||||||
|
updateMultiples(sieve, i, n, false)
|
||||||
ch <- sieve[i]
|
ch <- sieve[i]
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
|
||||||
|
|
@ -17,9 +17,9 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
package sieve
|
package sieve
|
||||||
|
|
||||||
/*
|
/*
|
||||||
MobiusSieve computes mobius(k) for k=1 to n, where mobius is the Mobius function.
|
Mobius computes mobius(k) for k=1 to n, where mobius is the Mobius function.
|
||||||
*/
|
*/
|
||||||
func MobiusSieve(n uint, buflen uint) chan int {
|
func Mobius(n uint, buflen uint) chan int {
|
||||||
sieve := make([]int, n)
|
sieve := make([]int, n)
|
||||||
for i := 0; i < int(n); i++ {
|
for i := 0; i < int(n); i++ {
|
||||||
sieve[i] = i
|
sieve[i] = i
|
||||||
|
|
|
||||||
|
|
@ -16,29 +16,16 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
package sieve
|
package sieve
|
||||||
|
|
||||||
func primeOmegaUpdateMultiples(sieve []uint, p uint, n uint, multiplicity bool) {
|
func updatePowers(sieve []uint, p uint, n uint) {
|
||||||
for q := p; ; q *= p {
|
for q := p; p*q < n; q *= p {
|
||||||
// omega(a*b) = omega(a) + omega(b) if gcd(a,b) = 1
|
|
||||||
for i := 2 * q; i < n; i += q {
|
|
||||||
if i%(p*q) != 0 {
|
|
||||||
sieve[i] += sieve[q]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if p*q >= n {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
|
|
||||||
if multiplicity {
|
|
||||||
sieve[p*q] = 1 + sieve[q]
|
sieve[p*q] = 1 + sieve[q]
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
PrimeOmegaSieve computes omega(k) for k=1 to n, where omega is the prime omega function. If multiplicity is true, factors are counted with multiplicity.
|
PrimeOmega computes omega(k) for k=1 to n, where omega is the prime omega function. If multiplicity is true, factors are counted with multiplicity.
|
||||||
*/
|
*/
|
||||||
func PrimeOmegaSieve(n uint, multiplicity bool, buflen uint) chan uint {
|
func PrimeOmega(n uint, multiplicity bool, buflen uint) chan uint {
|
||||||
sieve := make([]uint, n)
|
sieve := make([]uint, n)
|
||||||
for i := uint(0); i < n; i++ {
|
for i := uint(0); i < n; i++ {
|
||||||
sieve[i] = 0
|
sieve[i] = 0
|
||||||
|
|
@ -54,7 +41,11 @@ func PrimeOmegaSieve(n uint, multiplicity bool, buflen uint) chan uint {
|
||||||
}
|
}
|
||||||
|
|
||||||
sieve[i] = 1
|
sieve[i] = 1
|
||||||
primeOmegaUpdateMultiples(sieve, i, n, multiplicity)
|
if multiplicity {
|
||||||
|
updatePowers(sieve, i, n)
|
||||||
|
}
|
||||||
|
|
||||||
|
updateMultiples(sieve, i, n, true)
|
||||||
ch <- sieve[i]
|
ch <- sieve[i]
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
|
||||||
|
|
@ -35,9 +35,9 @@ func radicalUpdateMultiples(sieve []uint, p uint, n uint) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
RadicalSieve computes rad(k) for k=1 to n, where rad(n) is the radical of n.
|
Radical computes rad(k) for k=1 to n, where rad(n) is the radical of n.
|
||||||
*/
|
*/
|
||||||
func RadicalSieve(n uint, buflen uint) chan uint {
|
func Radical(n uint, buflen uint) chan uint {
|
||||||
sieve := make([]uint, n)
|
sieve := make([]uint, n)
|
||||||
sieve[0] = 0
|
sieve[0] = 0
|
||||||
for i := uint(1); i < n; i++ {
|
for i := uint(1); i < n; i++ {
|
||||||
|
|
@ -54,7 +54,12 @@ func RadicalSieve(n uint, buflen uint) chan uint {
|
||||||
}
|
}
|
||||||
|
|
||||||
sieve[i] = i
|
sieve[i] = i
|
||||||
radicalUpdateMultiples(sieve, i, n)
|
for j := i; i*j < n; j *= i {
|
||||||
|
// rad(p^k) = rad(p)
|
||||||
|
sieve[i*j] = sieve[i]
|
||||||
|
}
|
||||||
|
|
||||||
|
updateMultiples(sieve, i, n, false)
|
||||||
ch <- sieve[i]
|
ch <- sieve[i]
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
|
||||||
|
|
@ -17,9 +17,9 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
package sieve
|
package sieve
|
||||||
|
|
||||||
/*
|
/*
|
||||||
TotientSieve computes totient(k) for k=1 to n, where totient is Euler's totient function. buflen sets the buffer length of the returned channel. Larger buffer lengths can result in better performance at the cost of higher memory usage.
|
Totient computes totient(k) for k=1 to n, where totient is Euler's totient function. buflen sets the buffer length of the returned channel. Larger buffer lengths can result in better performance at the cost of higher memory usage.
|
||||||
*/
|
*/
|
||||||
func TotientSieve(n uint, buflen uint) chan uint {
|
func Totient(n uint, buflen uint) chan uint {
|
||||||
totients := make([]uint, n)
|
totients := make([]uint, n)
|
||||||
totients[0] = 0
|
totients[0] = 0
|
||||||
totients[1] = 1
|
totients[1] = 1
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue