/* Copyright © 2025 filifa This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ package cmd import ( "bufio" "fmt" "os" "github.com/spf13/cobra" "scm.dairydemon.net/filifa/mathtools/internal/lib" ) var primeOmegaN uint var primeOmegaMul bool func primeOmega(cmd *cobra.Command, args []string) { bufStdout := bufio.NewWriter(os.Stdout) defer bufStdout.Flush() ch := lib.PrimeOmegaSieve(primeOmegaN, primeOmegaMul, 1000) for i := 0; ; i++ { v, ok := <-ch if !ok { break } if i == 0 { continue } fmt.Fprintln(bufStdout, v) } } // primeOmegaCmd represents the primeOmega command var primeOmegaCmd = &cobra.Command{ Use: "prime-omega -n N", Short: "Compute the prime omega function for all numbers less than n", Long: `Compute the prime omega function for all numbers less than n. The prime omega functions Omega(n) and omega(n) count the number of prime factors of the input, either with or without multiplicity, respectively. For instance, 12 = 2^2 * 3, so Omega(12) = 3 and omega(12) = 2.`, Run: primeOmega, } func init() { sieveCmd.AddCommand(primeOmegaCmd) // Here you will define your flags and configuration settings. // Cobra supports Persistent Flags which will work for this command // and all subcommands, e.g.: // primeOmegaCmd.PersistentFlags().String("foo", "", "A help for foo") // Cobra supports local flags which will only run when this command // is called directly, e.g.: // primeOmegaCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle") primeOmegaCmd.Flags().UintVarP(&primeOmegaN, "limit", "n", 0, "upper limit") primeOmegaCmd.MarkFlagRequired("limit") primeOmegaCmd.Flags().BoolVarP(&primeOmegaMul, "with-multiplicity", "m", false, "count prime factors with multiplicity") }