package lib import ( "errors" "math/big" ) func SqrtRepetend(x *big.Int) ([]*big.Int, error) { m := big.NewInt(0) d := big.NewInt(1) a0 := new(big.Int).Sqrt(x) s := new(big.Int).Exp(a0, big.NewInt(2), nil) if x.Cmp(s) == 0 { return nil, errors.New("input is a perfect square") } repetend := make([]*big.Int, 0) a := new(big.Int).Set(a0) twoa0 := new(big.Int).Mul(big.NewInt(2), a0) for a.Cmp(twoa0) != 0 { // m = d * a - m tmp := new(big.Int) m.Sub(tmp.Mul(d, a), m) // d = (x - m^2) // d tmp.Exp(m, big.NewInt(2), nil) d.Div(tmp.Sub(x, tmp), d) // a = (a0 + m) // d a.Div(tmp.Add(a0, m), d) repetend = append(repetend, new(big.Int).Set(a)) } return repetend, nil } func CRTSolution(a1, n1, a2, n2 *big.Int) (*big.Int, *big.Int) { // use Bezout's identity to find m1, m2 such that m1*n1 + m2*n2 = 1 m1 := new(big.Int) m2 := new(big.Int) tmp := new(big.Int) tmp.GCD(m1, m2, n1, n2) // x = a1*m2*n2 + a2*m1*n1 x := new(big.Int).Set(a1) x.Mul(x, m2) x.Mul(x, n2) tmp.Set(a2) tmp.Mul(tmp, m1) tmp.Mul(tmp, n1) x.Add(x, tmp) N := new(big.Int).Set(n1) N.Mul(N, n2) x.Mod(x, N) return x, N } func ArePairwiseCoprime(moduli []*big.Int) bool { z := new(big.Int) for i, a := range moduli { for _, b := range moduli[i+1:] { z.GCD(nil, nil, a, b) if z.Cmp(big.NewInt(1)) != 0 { return false } } } return true } func Totient(n *big.Int) *big.Int { N := new(big.Int).Set(n) phi := new(big.Int).Set(N) sqrtn := new(big.Int).Sqrt(N) for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) { mod := new(big.Int).Mod(N, i) if mod.Cmp(big.NewInt(0)) != 0 { continue } // phi -= phi // i tmp := new(big.Int).Div(phi, i) phi.Sub(phi, tmp) for mod.Cmp(big.NewInt(0)) == 0 { N.Div(N, i) mod.Mod(N, i) } } if N.Cmp(big.NewInt(1)) == 1 { // phi -= phi // N tmp := new(big.Int).Div(phi, N) phi.Sub(phi, tmp) } return phi } func MultiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int { e := new(big.Int).Set(g) var k *big.Int for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) { e.Mul(e, g) e.Mod(e, modulus) } return k } func PrimitiveRoot(modulus *big.Int) (*big.Int, error) { if modulus.Cmp(big.NewInt(1)) == 0 { return big.NewInt(0), nil } phi := Totient(modulus) for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) { gcd := new(big.Int).GCD(nil, nil, g, modulus) if gcd.Cmp(big.NewInt(1)) != 0 { continue } order := MultiplicativeOrder(g, modulus) if order.Cmp(phi) == 0 { return g, nil } } return nil, errors.New("no primitive root") } func PrimitiveRootFast(modulus *big.Int, tpf map[string]*big.Int) (*big.Int, error) { phi := big.NewInt(1) for p, exp := range tpf { pow, ok := new(big.Int).SetString(p, 10) if !ok { return nil, errors.New("invalid factor " + p) } pow.Exp(pow, exp, nil) phi.Mul(phi, pow) } for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) { gcd := new(big.Int).GCD(nil, nil, g, modulus) if gcd.Cmp(big.NewInt(1)) != 0 { continue } isPrimitive := true for p := range tpf { // we already know factors are valid from computing phi k, _ := new(big.Int).SetString(p, 10) k.Div(phi, k) k.Exp(g, k, modulus) if k.Cmp(big.NewInt(1)) == 0 { isPrimitive = false break } } if isPrimitive { return g, nil } } return nil, errors.New("no primitive root") }