/* Copyright © 2025 filifa This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ package cmd import ( "errors" "fmt" "log" "math/big" "github.com/spf13/cobra" ) var modulus string var tpf []string func totient(n *big.Int) *big.Int { N := new(big.Int).Set(n) phi := new(big.Int).Set(N) sqrtn := new(big.Int).Sqrt(N) for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) { mod := new(big.Int).Mod(N, i) if mod.Cmp(big.NewInt(0)) != 0 { continue } // phi -= phi // i tmp := new(big.Int).Div(phi, i) phi.Sub(phi, tmp) for mod.Cmp(big.NewInt(0)) == 0 { N.Div(N, i) mod.Mod(N, i) } } if N.Cmp(big.NewInt(1)) == 1 { // phi -= phi // N tmp := new(big.Int).Div(phi, N) phi.Sub(phi, tmp) } return phi } func multiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int { e := new(big.Int).Set(g) var k *big.Int for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) { e.Mul(e, g) e.Mod(e, modulus) } return k } func computeNaive(modulus *big.Int) (*big.Int, error) { if modulus.Cmp(big.NewInt(1)) == 0 { return big.NewInt(0), nil } phi := totient(modulus) for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) { gcd := new(big.Int).GCD(nil, nil, g, modulus) if gcd.Cmp(big.NewInt(1)) != 0 { continue } order := multiplicativeOrder(g, modulus) if order.Cmp(phi) == 0 { return g, nil } } return nil, errors.New("no primitive root") } func computeFromFactors(modulus *big.Int, tpf []string) (*big.Int, error) { phi := big.NewInt(1) factors := make(map[string]bool) for _, s := range tpf { p, ok := new(big.Int).SetString(s, 10) if !ok { return nil, errors.New("invalid input " + s) } phi.Mul(phi, p) factors[p.Text(10)] = true } for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) { gcd := new(big.Int).GCD(nil, nil, g, modulus) if gcd.Cmp(big.NewInt(1)) != 0 { continue } isPrimitive := true for p := range factors { e := new(big.Int) f, _ := new(big.Int).SetString(p, 10) k := new(big.Int).Div(phi, f) e.Exp(g, k, modulus) if e.Cmp(big.NewInt(1)) == 0 { isPrimitive = false break } } if isPrimitive { return g, nil } } return nil, errors.New("no primitive root") } func primitiveRoot(cmd *cobra.Command, args []string) { m, ok := new(big.Int).SetString(modulus, 10) if !ok { log.Fatal("invalid input " + modulus) } root := new(big.Int) var err error if len(tpf) == 0 { root, err = computeNaive(m) if err != nil { log.Fatal(err) } } else { root, err = computeFromFactors(m, tpf) if err != nil { log.Fatal(err) } } fmt.Println(root) } // primitiveRootCmd represents the primitiveRoot command var primitiveRootCmd = &cobra.Command{ Use: "primitive-root -m M", Short: "Compute a primitive root modulo n", Long: `Compute a primitive root modulo n. This command computes a value g such that, for all integers a coprime to n, g^k = a (mod n) for some k. In other words, this command computes a generator for the multiplicative group of integers modulo n. For improved performance, provide the prime factorization of the totient of n with the -t flag. Note that primitive roots only exist for the moduli 1, 2, 4, p^k, and 2p^k, where p is an odd prime. The totients of these numbers are 1, 1, 2, (p-1)*p^(k-1), and (p-1)*p^(k-1), respectively.`, Run: primitiveRoot, } func init() { rootCmd.AddCommand(primitiveRootCmd) // Here you will define your flags and configuration settings. // Cobra supports Persistent Flags which will work for this command // and all subcommands, e.g.: // primitiveRootCmd.PersistentFlags().String("foo", "", "A help for foo") // Cobra supports local flags which will only run when this command // is called directly, e.g.: // primitiveRootCmd.Flags().BoolP("toggle", "t", false, "Help message for toggle") primitiveRootCmd.Flags().StringVarP(&modulus, "modulus", "m", "", "modulus") primitiveRootCmd.MarkFlagRequired("modulus") primitiveRootCmd.Flags().StringSliceVarP(&tpf, "totient-factorization", "t", make([]string, 0), "prime factorization of the totient of the modulus") // TODO: add a check flag for verifying -t input is the totient, test for performance }