package lib import ( "errors" "math/big" ) func Totient(n *big.Int) *big.Int { N := new(big.Int).Set(n) phi := new(big.Int).Set(N) sqrtn := new(big.Int).Sqrt(N) for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) { mod := new(big.Int).Mod(N, i) if mod.Cmp(big.NewInt(0)) != 0 { continue } // phi -= phi // i tmp := new(big.Int).Div(phi, i) phi.Sub(phi, tmp) for mod.Cmp(big.NewInt(0)) == 0 { N.Div(N, i) mod.Mod(N, i) } } if N.Cmp(big.NewInt(1)) == 1 { // phi -= phi // N tmp := new(big.Int).Div(phi, N) phi.Sub(phi, tmp) } return phi } func MultiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int { e := new(big.Int).Set(g) var k *big.Int for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) { e.Mul(e, g) e.Mod(e, modulus) } return k } func PrimitiveRoot(modulus *big.Int) (*big.Int, error) { if modulus.Cmp(big.NewInt(1)) == 0 { return big.NewInt(0), nil } phi := Totient(modulus) for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) { gcd := new(big.Int).GCD(nil, nil, g, modulus) if gcd.Cmp(big.NewInt(1)) != 0 { continue } order := MultiplicativeOrder(g, modulus) if order.Cmp(phi) == 0 { return g, nil } } return nil, errors.New("no primitive root") } func PrimitiveRootFast(modulus *big.Int, tpf map[string]*big.Int) (*big.Int, error) { phi := big.NewInt(1) for p, exp := range tpf { pow, ok := new(big.Int).SetString(p, 10) if !ok { return nil, errors.New("invalid factor " + p) } pow.Exp(pow, exp, nil) phi.Mul(phi, pow) } for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) { gcd := new(big.Int).GCD(nil, nil, g, modulus) if gcd.Cmp(big.NewInt(1)) != 0 { continue } if isPrimitiveRoot(g, modulus, phi, tpf) { return g, nil } } return nil, errors.New("no primitive root") } func isPrimitiveRoot(g *big.Int, modulus *big.Int, phi *big.Int, tpf map[string]*big.Int) bool { for p := range tpf { // we already know factors are valid from computing phi k, _ := new(big.Int).SetString(p, 10) k.Div(phi, k) k.Exp(g, k, modulus) if k.Cmp(big.NewInt(1)) == 0 { return false } } return true }