182 lines
3.4 KiB
Go
182 lines
3.4 KiB
Go
package lib
|
|
|
|
import (
|
|
"errors"
|
|
"math/big"
|
|
)
|
|
|
|
func SqrtRepetend(x *big.Int) ([]*big.Int, error) {
|
|
m := big.NewInt(0)
|
|
d := big.NewInt(1)
|
|
a0 := new(big.Int).Sqrt(x)
|
|
|
|
s := new(big.Int).Exp(a0, big.NewInt(2), nil)
|
|
if x.Cmp(s) == 0 {
|
|
return nil, errors.New("input is a perfect square")
|
|
}
|
|
|
|
repetend := make([]*big.Int, 0)
|
|
|
|
a := new(big.Int).Set(a0)
|
|
twoa0 := new(big.Int).Mul(big.NewInt(2), a0)
|
|
for a.Cmp(twoa0) != 0 {
|
|
// m = d * a - m
|
|
tmp := new(big.Int)
|
|
m.Sub(tmp.Mul(d, a), m)
|
|
|
|
// d = (x - m^2) // d
|
|
tmp.Exp(m, big.NewInt(2), nil)
|
|
d.Div(tmp.Sub(x, tmp), d)
|
|
|
|
// a = (a0 + m) // d
|
|
a.Div(tmp.Add(a0, m), d)
|
|
|
|
repetend = append(repetend, new(big.Int).Set(a))
|
|
}
|
|
|
|
return repetend, nil
|
|
}
|
|
|
|
func CRTSolution(a1, n1, a2, n2 *big.Int) (*big.Int, *big.Int) {
|
|
// use Bezout's identity to find m1, m2 such that m1*n1 + m2*n2 = 1
|
|
m1 := new(big.Int)
|
|
m2 := new(big.Int)
|
|
tmp := new(big.Int)
|
|
tmp.GCD(m1, m2, n1, n2)
|
|
|
|
// x = a1*m2*n2 + a2*m1*n1
|
|
x := new(big.Int).Set(a1)
|
|
x.Mul(x, m2)
|
|
x.Mul(x, n2)
|
|
|
|
tmp.Set(a2)
|
|
tmp.Mul(tmp, m1)
|
|
tmp.Mul(tmp, n1)
|
|
|
|
x.Add(x, tmp)
|
|
|
|
N := new(big.Int).Set(n1)
|
|
N.Mul(N, n2)
|
|
|
|
x.Mod(x, N)
|
|
|
|
return x, N
|
|
}
|
|
|
|
func ArePairwiseCoprime(moduli []*big.Int) bool {
|
|
z := new(big.Int)
|
|
for i, a := range moduli {
|
|
for _, b := range moduli[i+1:] {
|
|
z.GCD(nil, nil, a, b)
|
|
if z.Cmp(big.NewInt(1)) != 0 {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
func Totient(n *big.Int) *big.Int {
|
|
N := new(big.Int).Set(n)
|
|
|
|
phi := new(big.Int).Set(N)
|
|
|
|
sqrtn := new(big.Int).Sqrt(N)
|
|
for i := big.NewInt(2); i.Cmp(sqrtn) != 1; i.Add(i, big.NewInt(1)) {
|
|
mod := new(big.Int).Mod(N, i)
|
|
if mod.Cmp(big.NewInt(0)) != 0 {
|
|
continue
|
|
}
|
|
|
|
// phi -= phi // i
|
|
tmp := new(big.Int).Div(phi, i)
|
|
phi.Sub(phi, tmp)
|
|
|
|
for mod.Cmp(big.NewInt(0)) == 0 {
|
|
N.Div(N, i)
|
|
mod.Mod(N, i)
|
|
}
|
|
}
|
|
|
|
if N.Cmp(big.NewInt(1)) == 1 {
|
|
// phi -= phi // N
|
|
tmp := new(big.Int).Div(phi, N)
|
|
phi.Sub(phi, tmp)
|
|
}
|
|
|
|
return phi
|
|
}
|
|
|
|
func MultiplicativeOrder(g *big.Int, modulus *big.Int) *big.Int {
|
|
e := new(big.Int).Set(g)
|
|
var k *big.Int
|
|
for k = big.NewInt(1); e.Cmp(big.NewInt(1)) != 0; k.Add(k, big.NewInt(1)) {
|
|
e.Mul(e, g)
|
|
e.Mod(e, modulus)
|
|
}
|
|
|
|
return k
|
|
}
|
|
|
|
func PrimitiveRoot(modulus *big.Int) (*big.Int, error) {
|
|
if modulus.Cmp(big.NewInt(1)) == 0 {
|
|
return big.NewInt(0), nil
|
|
}
|
|
|
|
phi := Totient(modulus)
|
|
|
|
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
|
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
|
continue
|
|
}
|
|
|
|
order := MultiplicativeOrder(g, modulus)
|
|
if order.Cmp(phi) == 0 {
|
|
return g, nil
|
|
}
|
|
}
|
|
|
|
return nil, errors.New("no primitive root")
|
|
}
|
|
|
|
func PrimitiveRootFast(modulus *big.Int, tpf map[string]*big.Int) (*big.Int, error) {
|
|
phi := big.NewInt(1)
|
|
for p, exp := range tpf {
|
|
pow, ok := new(big.Int).SetString(p, 10)
|
|
if !ok {
|
|
return nil, errors.New("invalid factor " + p)
|
|
}
|
|
|
|
pow.Exp(pow, exp, nil)
|
|
phi.Mul(phi, pow)
|
|
}
|
|
|
|
for g := big.NewInt(1); g.Cmp(modulus) == -1; g.Add(g, big.NewInt(1)) {
|
|
gcd := new(big.Int).GCD(nil, nil, g, modulus)
|
|
if gcd.Cmp(big.NewInt(1)) != 0 {
|
|
continue
|
|
}
|
|
|
|
isPrimitive := true
|
|
for p := range tpf {
|
|
e := new(big.Int)
|
|
f, _ := new(big.Int).SetString(p, 10)
|
|
k := new(big.Int).Div(phi, f)
|
|
e.Exp(g, k, modulus)
|
|
|
|
if e.Cmp(big.NewInt(1)) == 0 {
|
|
isPrimitive = false
|
|
break
|
|
}
|
|
}
|
|
|
|
if isPrimitive {
|
|
return g, nil
|
|
}
|
|
}
|
|
|
|
return nil, errors.New("no primitive root")
|
|
}
|