add problem 86
This commit is contained in:
parent
7d7fcecd13
commit
830ca940de
|
@ -0,0 +1,124 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c102f0bb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# [Cuboid Route](https://projecteuler.net/problem=86)\n",
|
||||
"\n",
|
||||
"Suppose you have a cuboid with side lengths $a \\leq b \\leq M$. Then the shortest route will be $\\sqrt{(a + b)^2 + M^2}$. We're interested in when this distance is an integer.\n",
|
||||
"\n",
|
||||
"However, rather than iterate through values of $a$, $b$, and $M$, we can be more efficient by iterating through values of $M$, then values of $s$, where $s \\leq 2M$. If $s^2 + M^2$ is a square number, then that means any $a,b$ such that $s = a+b$ and $a \\leq b \\leq M$ will correspond to an $a \\times b \\times M$ cuboid with integer shortest route.\n",
|
||||
"\n",
|
||||
"So, if $s = a + b$, naturally $b = s - a$, and we want to know how many values of $a$ satisfy $1 \\leq a \\leq s - a \\leq M$. We can derive four bounds on $a$ from this.\n",
|
||||
"* $1 \\leq a$\n",
|
||||
"* $s - M \\leq a$\n",
|
||||
"* $a \\leq \\frac{s}{2}$\n",
|
||||
"* $a \\leq M$\n",
|
||||
"\n",
|
||||
"From these bounds, we can get the number of cuboids that can be constructed from an $(s, M)$ pair."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "6ce96a6e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def leg_splits(s, M):\n",
|
||||
" max_a = min(M, s // 2 + 1)\n",
|
||||
" min_a = max(s - M, 1)\n",
|
||||
" return max_a - min_a"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "00e62dfc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Then we can write a function to find the number of cuboids with at least one edge equaling $M$."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "caf59499",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def count_cuboids(M):\n",
|
||||
" return sum(leg_splits(s, M) for s in range(1, 2 * M + 1) if is_square(s^2 + M^2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d110565c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To get our answer, we just compute a running total and stop when it exceeds one million."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "984b7665",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1818"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from itertools import count\n",
|
||||
"\n",
|
||||
"total = 0\n",
|
||||
"for M in count(1):\n",
|
||||
" total += count_cuboids(M)\n",
|
||||
" if total > 1000000:\n",
|
||||
" break\n",
|
||||
" \n",
|
||||
"M"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "488ec2af",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Relevant sequences\n",
|
||||
"* Number of pairs $a,b$ such that $(a+b)^2 + n^2$ is square: [A143714](https://oeis.org/A143714)\n",
|
||||
"* Partial sums of A143714: [A143715](https://oeis.org/A143715)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "SageMath 9.5",
|
||||
"language": "sage",
|
||||
"name": "sagemath"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue